精英家教网 > 高中数学 > 题目详情

如图,四点共圆,的延长线交于点,点的延长线上.

(1)若,求的值;

(2)若,求证:线段成等比数列.

 

【答案】

(1) (2)先证

【解析】

试题分析:(Ⅰ)解:由四点共圆,得

,∴ ,于是. ①

,则由,得,即

代入①,得.                           

(Ⅱ)证明:由,得

,∴ .又

,于是,故成等比数列.   

考点:圆內接多边形的性质与判定;相似三角形的判定;相似三角形的性质.

点评:本题在圆内接四边形的条件下,一方面证明两条直线平行,另一方面求线段的比值.着重考查了圆中的比例线段、圆内接四边形的性质和相似三角形的判定与性质等知识点,属于中档题.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•哈尔滨一模)选修4-1:几何证明选讲
如图,AB是⊙O的直径,弦BD,CA的延长线相交于点E,EF垂直BA的延长线于点F.求证:
(1)BE•DE+AC•CE=CE2
(2)E,F,C,B四点共圆.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四点共圆,的延长线交于点,点的延长线上.

(1)若,求的值;

(2)若,求证:线段成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四点共圆,的延长线交于点,点的延长线上.

(1)若,求的值;

(2)若,求证:线段成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图, 四点共圆,相交于,则的长为

                

查看答案和解析>>

同步练习册答案