精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
ex
a
-
a
ex
,(a∈R且a>0).
(1)判断函数f(x)的单调性,并证明;
(2)若函数f(x)的定义域为(-2,2)时,求使f(1-m)-f(m2-1)<0成立的实数m的取值范围.
考点:函数单调性的判断与证明,函数单调性的性质
专题:函数的性质及应用,导数的综合应用
分析:(1)求f′(x),根据f′(x)的符号即可判断函数f(x)的单调性;
(2)由f(1-m)-f(m2-1)<0得,f(1-m)<f(m2-1),根据f(x)在(-2,2)上的单调性及定义域(-2,2)即可得到关于m的不等式组,解不等式组即得m的取值范围.
解答: 解:(1)f′(x)=
ex
a
+
a
ex

∵a>0,∴f′(x)>0;
∴f(x)在R上是增函数;
(2)由原不等式得:f(1-m)<f(m2-1);
∵f(x)在(-2,2)上是增函数,所以:
-2<1-m<2
-2<m2-1<2
1-m<m2-1
,解得1<m<
3

∴实数m的取值范围是(1,
3
)
点评:考查函数导数符号和函数单调性的关系,根据函数单调性解不等式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=
x2+2x,(x≥0)
-x2+2x,(x<0)
,f(t2+2t)+f(t-4)>0,则实数t的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=log2(x+4)-3x的零点有(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,若对任意n∈N*,都有Sn=3an-5n.
(1)求数列{an}的首项;
(2)若数列{an+λ}是等比数列,试求出实数λ的值,并写出数列{an}的通项公式;
(3)数列{bn}满足bn=
9n+4
an+5
,是否存在m,对任意n∈N*使得bn≤bm成立?如果存在,求出正整数m的值,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设平面α∩平面β=EF,AB⊥α,CD⊥α,垂足分别为B,D,如果再增加一个条件,就可以推出BD⊥EF.现有:①AC⊥β;②AC∥EF;③AC与CD在β内的射影
在同一条直线上.那么上述三个条件中能成为增加条件的个数是(  )
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线a,b同时和第三条直线垂直,则直线a,b的位置关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
x-1
,若|f(x)|≥
1
5
|a2-a|对于任意x∈[-4,-1]恒成立,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,割线PBC经过圆心O,OB=PB=1,又PED交圆O于E,D,且DE=
4
7
7
,则△OPD的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(n)=2+24+27+210+…+23n+10(n∈N),则f(n)等于(  )
A、
2
7
(8n-1)
B、
2
7
(8n+1-1)
C、
2
7
(8n+3-1)
D、
2
7
(8n+4-1)

查看答案和解析>>

同步练习册答案