精英家教网 > 高中数学 > 题目详情

【题目】如图,矩形ABCD是某小区户外活动空地的平面示意图,其中AB=50米,AD=100米现拟在直角三角形OMN内栽植草坪供儿童踢球娱乐(其中,点OAD的中点,OMON,点MAB上,点NCD),将破旧的道路AM重新铺设.已知草坪成本为每平方米20元,新道路AM成本为每米500元,设∠OMAθ,记草坪栽植与新道路铺设所需的总费用为f(θ).

(1)求f(θ)关于θ函数关系式,并写出定义域;

(2)为节约投入成本,当tanθ为何值时,总费用 f(θ)最小?

【答案】(1)f(θ),其定义域为;(2

【解析】试题分析:1)在RtOAM中,解出,在RtODN中求出ON故可得,由题意当点M与点B重合时,θ取最小值;当点N与点C重合时,θ取最大值,即,故可得最后结果;(2)由(1)可得,对其求导,利用导数判断其单调性得其最值.

试题解析:(1)据题意,在RtOAM中,OA50OMAθ,所以AMOM据平面几何知识可知∠DONθRtODN中,OD50DONθ,所以ON所以f(θ) 据题意,当点M与点B重合时,θ取最小值;当点N与点C重合时,θ取最大值,所以所以f(θ),其定义域为

2)由(1)可知,f(θ)

0,得其中列表

θ

极小值

所以当时,总费用 f(θ)取最小值,可节约投入成本.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1= 且an+1= .设bn+2=3 ,数列{cn}满足cn=anbn
(1)求数列{bn}通项公式;
(2)求数列{cn}的前n项和Sn
(3)若cn +m﹣1对一切正整数n恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线经过点,倾斜角,圆的极坐标方程

(1)写出直线的参数方程,并把圆的方程化为直角坐标方程;

(2)设圆上的点到直线的距离最近,点到直线的距离最远,求点的横坐标之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的方程为:x2+y2=4
(1)求过点P(2,1)且与圆C相切的直线l的方程;
(2)直线l过点D(1,2),且与圆C交于A、B两点,若|AB|=2 ,求直线l的方程;
(3)圆C上有一动点M(x0 , y0), =(0,y0),若向量 = + ,求动点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数为偶函数且图象经过原点,其导函数的图象过点

(1)求函数的解析式;

(2)设函数,其中m为常数,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|y= },B={y|y=x ,x∈R},C={x|mx<﹣1},
(1)求R(A∩B);
(2)是否存在实数m使得(A∩B)C成立,若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直角坐标平面内的两点P、Q满足条件:
①P、Q都在函数y=f(x)的图象上;
②P、Q关于原点对称,则称点对[P,Q]是函数y=f(x)的一对“友好点对”(点对[P,Q]与[Q,P]看作同一对“友好点对”),
已知函数f(x)= ,则此函数的“友好点对”有(
A.0对
B.1对
C.2对
D.3对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若函数y=f(f(x)﹣a)﹣1有三个零点,则a的取值范围是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.
(1)写出函数f(x)(x∈R)的解析式.
(2)若函数g(x)=f(x)+(4﹣2a)x+2(x∈[1,2]),求函数g(x)的最小值h(a).

查看答案和解析>>

同步练习册答案