精英家教网 > 高中数学 > 题目详情
20.a=sin(sin1),b=cos(cos1),c=tan(tan1),下列正确的是(  )
A.b<c<aB.a<b<cC.c<a<bD.c<b<a

分析 根据1弧度≈57°18′,得出sin1、cos1与tan1的大小,再比较tan(tan1)与sin(sin1)、cos(cos1)的大小即可.

解答 解:∵1弧度≈57°18′,
∴$\frac{\sqrt{2}}{2}$=sin45°<sin1<sin60°=$\frac{\sqrt{3}}{2}$,
$\frac{1}{2}$=cos60°<cos1<cos45°=$\frac{\sqrt{2}}{2}$,
1=tan45°<tan1<tan60°=$\sqrt{3}$;
∴c=tan(tan1)>1,
a=sin(sin1)<sin$\frac{π}{4}$=$\frac{\sqrt{2}}{2}$,
b=cos(cos1)>cos$\frac{π}{4}$=$\frac{\sqrt{2}}{2}$,且b<1;
∴a、b、c的大小关系是a<b<c.
故选:B.

点评 本题考查了三角函数值的大小比较问题,也考查了弧度制与角度制的转化问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天涨停,之后两天时间又跌回到原价,若这两天此股票股价的平均每天下跌的百分率为x,则x满足的方程是(  )
A.1-2x=$\frac{9}{10}$B.1-2x=$\frac{10}{11}$C.(1-x)2=$\frac{9}{10}$D.(1-x)2=$\frac{10}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=(mx+1)(1nx-3).
(1)若m=1,求曲线y=f(x)在x=1处的切线方程;
(2)若函数f(x)在(0,+∞)上是增函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,AB=$\sqrt{3}$,AC=1,∠B=30°,△ABC的面积为$\frac{\sqrt{3}}{2}$,则∠C=60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的实轴长为2,焦距为4,过右焦点F1作垂直于x轴的直线l,该双曲线的渐近线与直线l2所围成的三角形的面积记为S,则S的值为(  )
A.2$\sqrt{3}$B.$\sqrt{3}$C.2D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>D)的离心率为$\frac{\sqrt{3}}{3}$,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为$\frac{\sqrt{2}}{2}$.
(1)求a、b的值;
(2)C上是否存在点P,使得当l绕P转到某一位置时,有$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.己知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,其中左焦点F(-2,0).
(1)求椭圆C的方程;
(2)若直线y=x+m(m>0)与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=ex+4x-3的零点所在的区间为(  )
A.(0,$\frac{1}{4}$)B.($\frac{1}{4}$,$\frac{1}{2}$)C.($\frac{1}{2}$,$\frac{3}{4}$)D.($\frac{3}{4}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知log${\;}_{\frac{2}{3}}$a>1,($\frac{2}{3}$)b>1,2c=3,则(  )
A.a>b>cB.c>b>aC.a>c>bD.c>a>b

查看答案和解析>>

同步练习册答案