精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)=logax1)(a0,且a≠1).

1)若fx)在[29]上的最大值与最小值之差为3,求a的值;

2)若a1,求不等式f2x)>0的解集.

【答案】1a2.(2{x|x1}

【解析】

1)对a分类讨论,根据单调性求出函数的最值,即可求解;

2)根据单调性,把对数不等式等价转化指数不等式,即可求出结论.

1)①当a1 时,fx)=logax1)在(1+∞)上为增函数,

∴在[29]上函数fx)的最小值,最大值分别为:

fxminf2)=0fxmaxf9)=loga8

loga803,∴a2

②当0a1 时,fx)=logax 在(1+∞)上为减函数,

∴在[29]上函数fx)的最小值、最大值分别为:

fxminf9)=loga8fxmaxf2)=0

∴﹣loga83,即loga8=﹣3,∴a

a2

2)若a1,不等式f2x)>0f2x)>f22x2x1

故若a1,不等式f2x)>0的解集为{x|x1}

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,点为某沿海城市的高速公路出入口直线为海岸线是以为圆心半径为的圆弧型小路.该市拟修建一条从通往海岸的观光专线其中上异于的一点平行.

(1)证明:观光专线的总长度随的增大而减小

(2)已知新建道路的单位成本是翻新道路的单位成本的2倍.当取何值时观光专线的修建总成本最低请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《西游记女儿国》是由星皓影业有限公司出品的喜剧魔幻片,由郑保瑞执导,郭富城、冯绍峰、赵丽颖、小沈阳、罗仲谦、林志玲、梁咏琪、刘涛等人领衔主演,该片于2017年电影之夜获得年度最受期待系列电影奖,于2018年2月16日(大年初一)在中国内地上映.某机构为了了解年后社区居民观看《西游记女儿国》的情况,随机调查了当地一个社区的60位居民,其中男性居民有25人,观看了此片的有10人,女性居民有35人,观看了此片的有25人.

(1)完成下面列联表:

性别

观看此片

未观看此片

合计

合计

(2)根据以上列联表,能否在犯错误的概率不超过0.05的前提下,认为“该社区居民是否观看《西游记女儿国》与性别有关”?请说明理由.

参考公式: .

附表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx)的定义域为(0,+),且满足f2)=1fxy)=fx)+fy),又当x2>x1>0时,fx2>fx1).

1)求f1)、f4)、f8)的值;

2)若有fx)+fx2≤3成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班从6名班干部中其中男生4人,女生2人,任选3人参加学校的义务劳动.

1设所选3人中女生人数为ξ,求ξ的分布列;

2求男生甲或女生乙被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某理财公司有两种理财产品AB,这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):

产品A

投资结果

获利40%

不赔不赚

亏损20%

概率

产品B

投资结果

获利20%

不赔不赚

亏损10%

概率

p

q

注:p>0,q>0

(1)已知甲、乙两人分别选择了产品A和产品B投资,如果一年后他们中至少有一人获利的概率大于,求实数p的取值范围;

(2)若丙要将家中闲置的10万元人民币进行投资,以一年后投资收益的期望值为决策依据,则选用哪种产品投资较理想?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一般认为,民用住宅的窗户面积必须小于地板面积,但窗户面积与地板面积的比应不小于10%,而且这个比值越大,采光效果越好.

1)若一所公寓窗户面积与地板面积的总和为,则这所公寓的窗户面积至少为多少平方米?

2)若同时增加相同的窗户面积和地板面积,公寓的采光效果是变好了还是变坏了?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】火车站有某公司待运的甲种货物,乙种货物,现计划用AB两种型号的货厢共50节运送这批货物,已知35t甲种货物和15乙种货物可装满一节A型货厢,25t甲种货物和35乙种货物可装满一节B型货厢,据此安排AB两种货厢的节数,共有几种方案?若每节A型货厢的运费是0.5万元,每节B型货用的运费是0.8万元,哪种方案的运费较少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论的单调性;

(Ⅱ)记上最大值为,若,求实数的取值范围.

查看答案和解析>>

同步练习册答案