精英家教网 > 高中数学 > 题目详情

【题目】某市司法部门为了宣传《宪法》举办法律知识问答活动,随机对该市18~68岁的人群抽取一个容量为n的样本,并将样本数据分成五组:[18,28),[28,38),[38,48),[48,58),[58,68),再将其按从左到右的顺序分别编号为第1组,第2组,…,第5组,绘制了样本的频率分布直方图;并对回答问题情况进行统计后,结果如下表所示.

组号

分组

回答正确的人数

回答正确的人数占本组的比例

第1组

[18,28)

5

0.5

第2组

[28,38)

18

a

第3组

[38,48)

27

0.9

第4组

[48,58)

x

0.36

第5组

[58,68)

3

0.2


(1)分别求出a,x的值;
(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?
(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.

【答案】
(1)解:第1组人数5÷0.5=10,所以n=10÷0.1=100,

第2组频率为:0.2,人数为:100×0.2=20,所以a=18÷20=0.9,

第4组人数100×0.25=25,所以x=25×0.36=9


(2)解:第2,3,4组回答正确的人的比为18:27:9=2:3:1,所以第2,3,4组每组应各依次抽取2人,3人,1人.
(3)解:记“所抽取的人中第2组至少有1人获得幸运奖”为事件A,抽取的6人中,第2组的设为a1,a2,第3组的设为b1,b2,b3,第4组的设为c,则从6名幸运者中任取2名的所有可能的情况有15种,它们是:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,c),(a2,b1),(a2,b2),(a2,b3),(a2,c),(b1,b2),(b1,b3),(b1,c),(b2,b3),(b2,c),(b3,c).

其中第2组至少有1人的情况有9种,他们是:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,c),(a2,b1),

(a2,b2),(a2,b3),(a2,c).

∴P(A)=

答:所抽取的人中第2组至少有1人获得幸运奖的概率为


【解析】(1)根据回答对的人数:每组的人数=回答正确的概率,分别可求得要求的值,(2)由分层抽样按比例抽取得特点可得各组的人数,(3)记抽取的6人中,第2组的记为a1,a2,第3组的设为b1,b2,b3,第4组的设为c,列举可得从6名学生中任取2名的所有可能的情况,以及其中第2组至少有1人的情况种数,由古典概型可得概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2ex1+ax3+bx2 , 已知x=﹣2和x=1为f(x)的极值点.
(1)求a和b的值;
(2)讨论f(x)的单调性;
(3)设g(x)= x3﹣x2 , 试比较f(x)与g(x)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(n)=1+ + + +…+ ,g(n)= ,n∈N*
(1)当n=1,2,3时,试比较f(n)与g(n)的大小关系;
(2)猜想f(n)与g(n)的大小关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有4个新毕业的老师要分配到四所学校任教,每个老师都有分配(结果用数字表示).
(1)共有多少种不同的分配方案?
(2)恰有一个学校不分配老师,有多少种不同的分配方案?
(3)某个学校分配了2个老师,有多少种不同的分配方案?
(4)恰有两个学校不分配老师,有多少种不同的分配方案?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),则数列{ }的前10项的和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F是椭圆C: + =1的右焦点,P是C上一点,A(﹣2,1),当△APF周长最小时,其面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 有两个极值点x1 , x2 , 且x1<x2 , 记点M(x1 , f(x1)),N(x2 , f(x2)).
(Ⅰ)求直线MN的方程;
(Ⅱ)证明:线段MN与曲线y=f(x)有且只有一个异于M、N的公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x3﹣6x2+9x﹣abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:
①f(0)f(1)>0;
②f(0)f(1)<0;
③f(0)f(3)>0;
④f(0)f(3)<0.
其中正确结论的序号是( )
A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y= +lg(﹣x2+4x﹣3)的定义域为M,
(1)求M;
(2)当x∈M时,求函数f(x)=a2x+2+34x(a<﹣3)的最小值.

查看答案和解析>>

同步练习册答案