精英家教网 > 高中数学 > 题目详情

(本小题14分)已知函数(1)判断此函数的奇偶性;(2)判断函数的单调性,并加以证明.(3)解不等式

(1)函数是奇函数
(2)任取,且,则.
因为,而当时,;当,函数是增函数
(3),得解得

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求的单调递增区间;
(2)当时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)
已知函数.
(Ⅰ)当时,求函数的最小值.
(Ⅱ)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论函数的单调区间;
(2)如果存在,使函数处取得最小值,试求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)若定义在上的函数同时满足下列三个条件:
①对任意实数均有成立;
; ③当时,都有成立。
(1)求的值;
(2)求证:上的增函数
(3)求解关于的不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)已知,且.
(1)求实数的值;
(2)求函数的单调递增区间及最大值,并指出取得最大值时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知
(1)求函数在[t,t+2](t>0)上的最小值
(2)对一切恒成立,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为R的函数是奇函数。
(1)求的值;
(2)用定义证明上为减函数;
(3)若对于任意,不等式恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且.
(Ⅰ)判断的奇偶性并说明理由;    
(Ⅱ)判断在区间上的单调性,并证明你的结论;
(Ⅲ)若在区间上,不等式恒成立,试确定实数的取值范围.

查看答案和解析>>

同步练习册答案