精英家教网 > 高中数学 > 题目详情
9.已知y=f(x)为偶函数,若f(1)=2,则f(-1)=2.

分析 根据奇函数的性质,可得f(x)=f(-x),将x=1代入可得答案.

解答 解:∵y=f(x)为偶函数,
∴f(x)=f(-x),
∴f(-1)=f(1)=2,
故答案为:2

点评 本题考查的知识点是函数奇偶性的性质,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=log${\;}_{\frac{1}{3}}$(a-x)-log${\;}_{\frac{1}{3}}$(x+3)是奇函数.
(1)求实数a的值;
(2)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=sinx与y=$\frac{1}{2}$x的图象在(-$\frac{π}{2}$,$\frac{π}{2}$)上的交点有1个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求下列函数的定义域:
(1)y=$\sqrt{sinxtanx}$;
(2)y=1g(sin2x)+$\sqrt{9-{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求证:方程x3+3x-1=0在区间(0,1)上有实数解.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.不等式组$\left\{\begin{array}{l}{|x-1|-3<0}\\{a-2x>0}\end{array}\right.$的解集为{x|-2<x<3},则实数a的取值范围是(  )
A.a=4B.a=6C.a≤6D.a≥6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.分别指出下面各命题的形式及构成它的简单命题,并指出复合命题的真假.
(1)8或6是30的约数;
(2)12能被2和3整除.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如果实数x,y满足条件$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$,则z=$\frac{y+1}{x}$的最大值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知sinα=2cosα,求下列各式的值.
(1)sin2α-cos2α:
(2)sin2α+sinαcosα+3.

查看答案和解析>>

同步练习册答案