精英家教网 > 高中数学 > 题目详情

(理科)已知函数f(x)=ex-kx,x∈R.

(Ⅰ)若k=e,试确定函数f(x)的单调区间;

(Ⅱ)若k>0,且对于任意x∈R,f(|x|)>0恒成立,试确定实数k的取值范围.

答案:
解析:

  解:(Ⅰ)由k=e得f(x)=ex-ex,所以(x)=ex-e.

  由(x)>0得x>1,

  故f(x)的单调递增区间是(1,+∞);4分

  由(x)<0得x<1,

  故f(x)的单调递减区间是(-∞,1).6分

  (Ⅱ)由f(|-x|)=f(|x|)可知f(|x|)是偶函数.于是f(|x|)>0对任意x∈R成立等价于f(x)>0对任意x≥0成立.由(x)=ex-k=0得x=lnk.

  ①当k∈(0,1时,(x)=ex-k>1-k≥0(x>0).此时f(x)在[0,+∞上单调递增.故f(x)≥f(0)=1>0,符合题意.所以0<k≤1;10分②当k∈(1,+∞)时,lnk>0.当x变化时(x),f(x)的变化情况如下:

  由此可得,在[0,+∞上,f(x)≥f(lnk)=k-klnk.

  依题意,k-klnk>0.又k>1,所以1<k<e.

  综合①②实数k的取值范围为(0,e).14分


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理科)已知函数f(x)=alnx-ax-3(a∈R).
(1)讨论函数f(x)的单调性;
(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对任意的t∈[1,2],若函数g(x)=x3+x2[f/(x)+
m
2
]
在区间(t,3)上有最值,求实数m取值范围;
(3)求证:ln(22+1)+ln(32+1)+ln(42+1)+…+ln(n2+1)<1+2lnn!(n≥2,n∈N*
(文科) 已知函数f(x)=ax3+
1
2
x2-2x+c

(1)若x=-1是f(x)的极值点且f(x)的图象过原点,求f(x)的极值;
(2)若g(x)=
1
2
bx2-x+d
,在(1)的条件下,是否存在实数b,使得函数g(x)的图象与函数f(x)的图象恒有含x=-1的三个不同交点?若存在,求出实数b的取值范围;否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)已知函数f(x)=3-4asinxcosx+4cos2x-4cos4x.若函数f(x)的最小值为1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)已知函数f(x)=xlnx.
(1)若存在x∈[
1
e
,e]
,使不等式2f(x)≥-x2+ax-3成立,求实数a的取值范围;
(2)设0<a<b,证明:f(a)+f(b)-2f(
a+b
2
)>0

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)已知函数f(x)=
(3-a)x-3,(x≤7)
ax-6,(x>7)
若x∈Z时,函数f(x)为递增函数,则实数a的取值范围为
(2,3)
(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•甘肃一模)(理科)已知函数f(x)=(1+x)2-2ln(1+x).
(1)若存在x0∈[0,1]使不等式f(x0)-m≤0能成立,求实数m的最小值;
(2)若关于x的方程f(x)=x2+x+a在[0,2]上恰有两个相异实根,求实数a的取值范围.

查看答案和解析>>

同步练习册答案