【题目】2019年4月10日21时整,全球六地(上海和台北、布鲁塞尔、圣地亚哥、东京和华盛顿同时召开新闻发布会,宣布人类首次利用虚拟射电望远镜,成功捕获世界上首张黑洞图像,公布的照片展示了一个中心为黑色的明亮环状结构,看上去有点像个橙色的甜甜圈,其黑色部分是黑洞投下的“阴影”,明亮部分是绕黑洞高速旋转的吸积盘.某同学作了一张黑洞示意图,如图所示,由两个同心圆和半个同心圆环构成圆及圆环的半径从内到外依次为2,3,4,5个单位在图中随机任取一点,则该点取自阴影的概率为( )
A.B.C.D.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线与曲线相交于两点,与轴相交于点.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有限个元素组成的集合,,记集合中的元素个数为,即.定义,集合中的元素个数记为,当时,称集合具有性质.
(1),,判断集合,是否具有性质,并说明理由;
(2)设集合,且(),若集合具有性质,求的最大值;
(3)设集合,其中数列为等比数列,()且公比为有理数,判断集合是否具有性质并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某校打算在长为1千米的主干道一侧的一片区域内临时搭建一个强基计划高校咨询和宣传台,该区域由直角三角形区域(为直角)和以为直径的半圆形区域组成,点(异于,)为半圆弧上一点,点在线段上,且满足.已知,设,且.初步设想把咨询台安排在线段,上,把宣传海报悬挂在弧和线段上.
(1)若为了让学生获得更多的咨询机会,让更多的省内高校参展,打算让最大,求该最大值;
(2)若为了让学生了解更多的省外高校,贴出更多高校的海报,打算让弧和线段的长度之和最大,求此时的的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】折纸是一项艺术,可以折出很多数学图形.将一张圆形纸片放在平面直角坐标系中,圆心B(-1,0),半径为4,圆内一点A为抛物线的焦点.若每次将纸片折起一角,使折起部分的圆弧的一点始终与点A重合,将纸展平,得到一条折痕,设折痕与线段B的交点为P.
(Ⅰ)将纸片展平后,求点P的轨迹C的方程;
(Ⅱ)已知过点A的直线l与轨迹C交于R,S两点,当l无论如何变动,在AB所在直线上存在一点T,使得所在直线一定经过原点,求点T的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,要利用一半径为的圆形纸片制作三棱锥形包装盒.已知该纸片的圆心为,先以为中心作边长为(单位:)的等边三角形,再分别在圆上取三个点,,,使,,分别是以,,为底边的等腰三角形.沿虚线剪开后,分别以,,为折痕折起,,,使得,,重合于点,即可得到正三棱锥.
(1)若三棱锥是正四面体,求的值;
(2)求三棱锥的体积的最大值,并指出相应的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn,a1=1,an>0,Sn2=an+12﹣λSn+1,其中λ为常数.
(1)证明:Sn+1=2Sn+λ;
(2)是否存在实数λ,使得数列{an}为等比数列,若存在,求出λ;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,圆,如图,分别交轴正半轴于点.射线分别交于点,动点满足直线与轴垂直,直线与轴垂直.
(1)求动点的轨迹的方程;
(2)过点作直线交曲线与点,射线与点,且交曲线于点.问:的值是否是定值?如果是定值,请求出该定值;如果不是定值,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com