精英家教网 > 高中数学 > 题目详情

己知F1 F2是椭圆(a>b>0)的两个焦点,若椭圆上存在一点P使得,则椭圆的离心率e的取值范围为________.

 

【答案】

【解析】当动点P在椭圆长轴端点处沿椭圆弧向短轴端点运动时,P对两个焦点的张角渐渐增大,当且仅当P点位于短轴端点处时,张角达到最大值.由此可得.∵存在点P为椭圆上一点,使得,∴△中,∠≥60°,可得Rt△P0OF2中,∠≥30°,所以,即b≤c,其中c= ,∴,可得,即,∵椭圆离心率e=,且a>c>0

≤e<1

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

己知F1,F2是椭圆
x2
9
+
y2
4
=1
的两个焦点.
(1)求椭圆离心率e;
(2)若点P在椭圆上,且∠F1PF2=90°,求P点坐标.

查看答案和解析>>

科目:高中数学 来源:辽宁省大连市二十四中2012届高三模拟考试数学理科试题 题型:022

己知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A、B两点,若△ABF2是等腰直角三角形,则这个椭圆的离心率是________

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

己知F1,F2是椭圆
x2
9
+
y2
4
=1
的两个焦点.
(1)求椭圆离心率e;
(2)若点P在椭圆上,且∠F1PF2=90°,求P点坐标.

查看答案和解析>>

科目:高中数学 来源:2007-2008学年山东省实验中学高二(上)期末数学试卷(文科)(解析版) 题型:解答题

己知F1,F2是椭圆的两个焦点.
(1)求椭圆离心率e;
(2)若点P在椭圆上,且∠F1PF2=90°,求P点坐标.

查看答案和解析>>

同步练习册答案