精英家教网 > 高中数学 > 题目详情
14.等差数列{an}的前n项和为Sn,且a3+a9=16,则S11=(  )
A.88B.48C.96D.176

分析 由题意、等差数列的性质、等差数列的前n项和公式,化简并求出S11的值.

解答 解:∵等差数列{an}中,a3+a9=16,
∴S11=$\frac{11({a}_{1}+{a}_{11})}{2}$=$\frac{11({a}_{3}+{a}_{9})}{2}$=88,
故选:A.

点评 本题考查等差数列的性质,等差数列的前n项和公式的灵活应用,考查整体思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知椭圆C的左右焦点坐标分别是(-2,0),(2,0),离心率为$\frac{\sqrt{2}}{2}$,若P为椭圆C上的任意一点,过点P垂直于y轴的直线交y轴于点Q,M为线段QP的中点,则点M的轨迹方程为$\frac{{x}^{2}}{2}+\frac{{y}^{2}}{4}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知复数z=$\frac{2i}{1-i}$,其中i 为虚数单位,则z所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆M的圆心在直线y=-x上,且经过点A(-3,0),B(1,2).
(1)求圆M的方程;
(2)直线l与圆M相切,且l在y轴上的截距是在x轴上截距的两倍,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({b>a>0})$的左焦点关于C的一条渐近线的对称点在另一条渐近线上,则C的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.三棱锥P-ABC的四个顶点都在体积为$\frac{500π}{3}$的球的表面上,底面ABC所在的小圆面积为16π,则该三棱锥的高的最大值为(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.等差数列的前n项,前2n项,前3n项的和分别为A,B,C,则(  )
A.A+C=2BB.B2=ACC.3(B-A)=CD.A2+B2=A(B+C)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知z=$\frac{4-3i}{3+4i}$+2(i为虚数单位),则z在复平面内所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC中的内角A,B,C所对的边长分比为a,b,c,且a=5,cosB=$\frac{4}{5}$.
(Ⅰ)若b=4,求sinA的值;
(Ⅱ)若△ABC的面积为12,求b,c的值.

查看答案和解析>>

同步练习册答案