【题目】已知为单位正方体,黑白两只蚂蚁从点出发沿棱向前爬行,每走完一条棱称为“走完一段”,白蚂蚁爬行的路线是,黑蚂蚁爬行的路线是,它们都遵循如下规则:所爬行的第段与第段所在直线必须是异面直线(其中是自然数),设黑、白蚂蚁都走完2012段后各停止在正方体的某个顶点处,这时黑、白两只蚂蚁的距离是______________.
科目:高中数学 来源: 题型:
【题目】某中学用简单随机抽样方法抽取了100名同学,对其社会实践次数进行调查,结果如下:
男同学人数 | 7 | 15 | 11 | 12 | 2 | 1 |
女同学人数 | 5 | 13 | 20 | 9 | 3 | 2 |
若将社会实践次数不低于12次的学生称为“社会实践标兵”.
(Ⅰ)将频率视为概率,估计该校1600名学生中“社会实践标兵”有多少人?
(Ⅱ)从已抽取的8名“社会实践标兵”中随机抽取4位同学参加社会实践表彰活动.
(i)设为事件“抽取的4位同学中既有男同学又有女同学”,求事件发生的概率;
(ii)用表示抽取的“社会实践标兵”中男生的人数,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知抛物线与轴相交于点,两点,是该抛物线上位于第一象限内的点.
(Ⅰ) 记直线的斜率分别为,求证:为定值;
(Ⅱ)过点作,垂足为.若关于轴的对称点恰好在直线上,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形为平行四边形,,平面,,,,且是的中点.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的大小;
(Ⅲ)在线段上是否存在一点,使得与所成的角为? 若存在,求出的长度;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,曲线:,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,过点的直线的参数方程为(为参数),点在直线上,且.
(Ⅰ)求点的极坐标;
(Ⅱ)若点是曲线上一动点,求点到直线的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,已知椭圆:(),,,,是椭圆上的四个动点,且,,线段与交于椭圆内一点.当点的坐标为,且,分别为椭圆的上顶点和右顶点重合时,四边形的面积为4.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)证明:当点,,,在椭圆上运动时,()是定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T.其范围为[0,10],分别有五个级别:T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10]严重拥堵,晚高峰时段(T≥2),从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的部分直方图如图所示.
(1)请补全直方图,并求出轻度拥堵、中度拥堵、严重拥堵路段各有多少个?
(2)用分层抽样的方法从交通指数在[4,6),[6,8),[8,l0]的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;
(3)从(2)中抽出的6个路段中任取2个,求至少一个路段为轻度拥堵的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】蝴蝶定理因其美妙的构图,像是一只翩翩起舞的蝴蝶,一代代数学名家蜂拥而证,正所谓花若芬芳蜂蝶自来.如图,已知圆的方程为,直线与圆交于,,直线与圆交于,.原点在圆内.
(1)求证:.
(2)设交轴于点,交轴于点.求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com