分析 ①由于A,B在抛物线上,根据抛物线的定义可知A'F=AF,B'F=BF,从而由相等的角,由此可判断A'F⊥B'F;
②取AB中点C,利用中位线即抛物线的定义可得CM=$\frac{1}{2}(AF+BF)=\frac{1}{2}AB$,从而AM⊥BM;
③由②知,AM平分∠A′AF,从而可得A′F⊥AM,根据AM⊥BM,利用垂直于同一直线的两条直线平行,可得结论;
④取AB⊥x轴,则四边形AFMA'为矩形,则可得结论;
⑤取AB⊥x轴,则四边形ABB'A'为矩形,则可得结论.
解答 解:①由于A,B在抛物线上,根据抛物线的定义可知A'A=AF,B'B=BF,因为A′、B′分别为A、B在l上的射影,所以A'F⊥B'F;
②取AB中点C,则CM=$\frac{1}{2}(AF+BF)=\frac{1}{2}AB$,∴AM⊥BM;
③由②知,AM平分∠A′AF,∴A′F⊥AM,∵AM⊥BM,∴A'F∥BM;
④取AB⊥x轴,则四边形AFMA′为矩形,则可知A'F与AM的交点在y轴上;
⑤取AB⊥x轴,则四边形ABB'A'为矩形,则可知AB'与A'B交于原点
故答案为①②③④⑤.
点评 本题以抛物线为载体,考查抛物线的性质,解题的关键是合理运用抛物线的定义.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a、b、c中至少有二个为负数 | B. | a、b、c中至多有一个为负数 | ||
C. | a、b、c中至多有二个为正数 | D. | a、b、c中至多有二个为负数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=-$\sqrt{3}$x+2 | B. | y=-$\sqrt{3}$x-2 | C. | y=$\sqrt{3}$x+2 | D. | y=$\sqrt{3}$x-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 17π | B. | 18π | C. | 20π | D. | 28π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com