精英家教网 > 高中数学 > 题目详情
如图,已知棱柱ABCD-A1B1C1D1的底面是正方形,且AA1⊥平面ABCD,E为棱AA1的中点,F为线段BD1的中点.
(1)证明:EF∥平面ABCD;
(2)证明:EF⊥平面BB1D1D.
考点:直线与平面垂直的判定,直线与平面平行的判定
专题:空间位置关系与距离
分析:(1)根据中的找出平行线,利用判断定理证明.(2)利用线线,线面,垂直的性质,判断定理转换求解.
解答: (1)证明:连接AC交BD与O,连接OF,
∵ABCD是 正方形
∴O是BD的中点,BD⊥OA,
又∵F为线段BD1的中点
∴OF∥DD1且OF=
1
2
DD1

∵E为棱AA1的中点,
∴OF∥AE且OF=AE
∴EF∥OA,
∵OA?平面ABCD,且EF?平面ABCD
∴EF∥平面ABCD
(2)证明:∵AA1⊥平面ABCD且AA1∥DD1
∴DD1⊥平面ABCD
∴DD1⊥OA
∵BD⊥OA且BD?平面BB1D1D,D1D?平面BB1D1D,BD∩1D1D=D
∴OA⊥平面BB1D1D
∵EF∥OA
∴EF⊥平面BB1D1D.
点评:本题考查了直线与平面平行垂直的判断定理,的运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若椭圆以正方形ABCD的对角线顶点A、C为焦点,且经过各边中点,则椭圆的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

lim
n→∞
n2
1+2+3+…+n
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在正项数列{an}中,Sn表示数列{an}前n项和且Sn=
1
4
an2+
1
2
an+
1
4
,n∈N+,数列{bn}满足bn=
1
4Sn-1
,Tn为数列{bn}的前n项和.
(I) 求an,Sn
(Ⅱ)是否存在最大的整数t,使得对任意的正整数n均有Tn
t
36
总成立?若存在,求出t;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)与g(x)=(
1
2
x的图象关于直线y=x对称,则f(4x-x2)的单调递增区间为(  )
A、(-∞,2)
B、(0,2)
C、(2,4)
D、(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图的程序框图表示的算法的运行结果是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某厂家准备在2014年12月份举行促销活动,依以往的数据分析,经测算,该产品的年销售量x万件(假设该厂生产的产品全部销售),与年促销费用y万元(0≤m≤4)近似满足x=3-
k
m+1
(k为常数),如果不促销,该产品的年销售量只能是1万件,已知2014年生产该产品的固定投入8万元,每生产1万件该产品需要再投入16万元.厂家将每件产品的销售价格规定的每件产品生产平均成本的1.5倍,(产品生产平均成本指固定投入和再投入两部分资金的平均成本).
(1)将2014年该产品的年利润y万元表示为年促销费用m万元的函数;
(2)该厂家2014年的年促销费用投入为多少万元时,该厂家的年利润最大?并求出最大年利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=mx2-4x+1的图象与x轴有公共点,则m的范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知直线x+y=a与圆x2+y2=4交于A,B两点,且|
OA
+
OB
|=|
OA
-
OB
|其中O为坐标原点,求a的值;
(2)圆C的方程为(x-2)2+y2=4,圆M的方程为(x-2-5cosθ)2+(y-5sinθ)2=1,过圆M上任意一点P作圆C的两条切线PE,PF,切点分别是E,F,求
PE
PF
的最小值.

查看答案和解析>>

同步练习册答案