精英家教网 > 高中数学 > 题目详情

中,内切圆圆心,设是⊙外的三角形区域内的动点,若,则点所在区域的面积为    ▲       

 

【答案】

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥S-ABC中,侧面SAB⊥底面ABC,且∠ASB=∠ABC=90°,AS=SB=2,AC=2
3


(Ⅰ)求证SA⊥SC;
(Ⅱ)在平面几何中,推导三角形内切圆的半径公式r=
2S
l
(其中l是三角形的周长,S是三角形的面积),常用如下方法(如右图):
①以内切圆的圆心O为顶点,将三角形ABC分割成三个小三角形:△OAB,△OAC,△OB精英家教网C.
②设△ABC三边长分别为a,b,c.由S△ABC=S△OBC+S△OAC+S△OAB
S=
1
2
ar+
1
2
br+
1
2
cr
=
1
2
lr
,则r=
2S
l

类比上述方法,请给出四面体内切球半径的计算公式(不要求说明类比过程),并利用该公式求出三棱锥S-ABC内切球的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

在Rt△ABC中,∠C=90°,AC=BC=2,D是△ABC内切圆圆心,设P是⊙D外的三角形ABC区域内的动点,若
CP
CA
CB
,则点(λ,μ)所在区域的面积为
1
2
-(
3
2
-
2
)π
1
2
-(
3
2
-
2
)π

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网给出以下判断:
(1)b=0是函数f(x)=ax2+bx+c为偶函数的充要条件;
(2)椭圆
x2
4
+
y2
3
=1
中,以点(1,1)为中点的弦所在直线方程为x+2y-3=0;
(3)回归直线
y
=
b
x+
a
必过点(
.
x
.
y
)

(4)如图,在四面体ABCD中,设E为△BCD的重心,则
AE
=
AB
+
1
2
AC
+
2
3
AD

(5)双曲线
x2
a2
-
y2
b2
=1( a>0 , b>0 )
的两焦点为F1,F2,P为右支是异于右顶点的任一点,△PF1F2的内切圆圆心为T,则点T的横坐标为a.其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源:2010-2011年福建省高二下学期学段考试数学理卷 题型:选择题

由“在平面内三角形的内切圆的圆心到三边的距离相等”联想到“在空间中内切于三棱锥的球的球心到三棱锥四个面的距离相等”这一推理过程是   (    )

A、归纳推理  B、类比推理  C、演绎推理  D、联想推理

 

查看答案和解析>>

同步练习册答案