精英家教网 > 高中数学 > 题目详情
4.定义域为{x|x>0}的函数f(x)满足f(xy)=f(x)+f(y)且f(8)=3,则$f({\sqrt{2}})$=(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{3}{8}$D.$\frac{3}{16}$

分析 由题意可得f(8)=f(2)+f(4)=f(2)+f(2)+f(2)=3f(2)=3(f($\sqrt{2}$)+f($\sqrt{2}$))=6f($\sqrt{2}$)=3,解得即可

解答 解:∵f(xy)=f(x)+f(y)且f(8)=3
∴f(8)=f(2)+f(4)=f(2)+f(2)+f(2)=3f(2)=3(f($\sqrt{2}$)+f($\sqrt{2}$))=6f($\sqrt{2}$)=3,
∴f($\sqrt{2}$)=$\frac{1}{2}$,
故选:A.

点评 本题考查了抽象函数的应用,关键是赋值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源:2015-2016学年江西省南昌市高二文下学期期末考试数学试卷(解析版) 题型:选择题

下列函数在其定义域内既是奇函数又是增函数的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若实数a,b满足$\frac{1}{a}+\frac{4}{b}=\sqrt{ab}$,则ab的最小值为(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.要利用现有的两面残墙,呈直角三角形墙ADG和矩形墙DCFG搭建成一个暖棚(如图所示),所立柱子EB垂直于暖棚底面ABCD,其余四面计划用薄膜覆盖,已知底面ABCD是边长为2$\sqrt{6}$cm的正方形,且GD=2m,EB=1m.
(1)求二面角E-GF-C的大小(结果用反三角形式表示);
(2)求直杆GE的长度;
(3)覆盖三角形AEG,至少需要多少面积的薄膜(结果精确到0.1m2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.(x+y+2)6的展开式中x2y3的系数为(  )
A.360B.120C.60D.40

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.三棱柱ABC-A1B1C1的底面是边长为2的等边三角形,AA1⊥底面ABC,点E,F分别是棱CC1,BB1上的点,且EC=B1F=2FB.
(1)证明:平面AEF⊥平面ACC1A1
(2)若AA1=3,求直线AB与平面AEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.$(1+x){(1-\sqrt{x})^6}$展开式中x3项系数为(  )
A.14B.15C.16D.17

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知抛物线y2=2x上一点A到焦点F的距离与其到对称轴的距离之比为9:4,且|AF|>2,点A到原点的距离为(  )
A.$\sqrt{41}$B.4$\sqrt{5}$C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知是定义在R上的函数,且满足①f(4)=0;②曲线y=f(x+1)关于点(-1,0)对称;③当x∈(-4,0)时,$f(x)={log_2}(\frac{x}{{{e^{|x|}}}}+{e^x}-m+1)$,若y=f(x)在x∈[-4,4]上有5个零点,则实数m的取值范围为[-3e-4,1)∪{-e-2}.

查看答案和解析>>

同步练习册答案