精英家教网 > 高中数学 > 题目详情

【题目】已知,设曲线

1)求函数的单调区间;

2)求函数上的最小值.

【答案】1)增区间为,减区间为;(2)当时,的最小值为a;当时,的最小值为

【解析】

1)先求得的定义域,然后利用导数求得的单调区间.

2)根据在区间的左侧、内部、右侧进行分类讨论的单调性,由此求得在区间上的最小值.

1)函数的定义域为

,由

所以列表如下

大于0

0

小于0

增函数

极大值

减函数

所以函数的增区间为,减区间为

2)由上面的推理得函数的增区间为,减区间为

需要对在区间的左侧、内部、右侧进行分类讨论,如下:

①当,即时,上是减函数,

所以的最小值为

②当,即时,上是增函数,

所以的最小值为

③当,即时,上是增函数,在上是减函数,

所以的最小值为中的较小者,故当时,的最小值为

时,的最小值为

综上所述,当时,的最小值为;.

时,的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为,以下结论中不正确的为

A. 15名志愿者身高的极差小于臂展的极差

B. 15名志愿者身高和臂展成正相关关系,

C. 可估计身高为190厘米的人臂展大约为189.65厘米,

D. 身高相差10厘米的两人臂展都相差11.6厘米,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(为参数).为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为(),将曲线向左平移2个单位长度得到曲线.

1)求曲线的普通方程和极坐标方程;

2)设直线与曲线交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数是定义在上的奇函数,且函数为偶函数,当时,,若有三个零点,则实数的取值集合是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线的参数方程为为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求直线的普通方程和曲线的直角坐标方程;

2)设点,直线与曲线的交点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若关于的方程有实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆周率是圆的周长与直径的比值,一般用字母表示.我们可以通过设计一个试验来估计的值:从表示的区域内随机抽取200个实数对,其中xy两个数能与1构成钝角三角形三边长的数对共有56个.则用随机模拟的方法估计的近似值为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市居民用天然气实行阶梯价格制度,具体见下表:

阶梯

年用气量(立方米)

价格(元/立方米)

第一阶梯

不超过228的部分

3.25

第二阶梯

超过228而不超过348的部分

3.83

第三阶梯

超过348的部分

4.70

从该市随机抽取10户(一套住宅为一户)同一年的天然气使用情况,得到统计表如下:

居民用气编号

1

2

3

4

5

6

7

8

9

10

年用气量(立方米)

95

106

112

161

210

227

256

313

325

457

1)求一户居民年用气费y(元)关于年用气量x(立方米)的函数关系式;

2)现要在这10户家庭中任意抽取3户,求抽到的年用气量超过228立方米而不超过348立方米的用户数的分布列与数学期望;

3)若以表中抽到的10户作为样本估计全市居民的年用气情况,现从全市中依次抽取10户,其中恰有k户年用气量不超过228立方米的概率为,求取最大值时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4—5:参数方程选讲]

在直角坐标系xoy中,曲线的参数方程是(t是参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程是

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)若两曲线交点为A、B,求

查看答案和解析>>

同步练习册答案