精英家教网 > 高中数学 > 题目详情

已知椭圆=1上任意一点P,由P向x轴作垂线段PQ,垂足为Q,点M在线段PQ上,且=2,点M的轨迹为曲线E.

(1)求曲线E的方程;

(2)若过定点F(0,2)的直线l交曲线E于不同的两点G,H(点G在点F,H之间),且满足=2,求直线l的方程.

(1)+y2=1(2)y=±x+2


解析:

(1)设M(x,y),P(x0,y0),

=2,∴

将其代入椭圆方程得=1

得曲线E的方程为:+y2=1.

(2)设G(x1,y1)、H(x2,y2),

=2,∴x2=2x1                                                                                                                                                                        

依题意,当直线l斜率不存在时,G(0,1),H(0,-1),不满足=2.故设直线l:y=kx+2,代入曲线E的方程并整理得(1+2k2)x2+8kx+6=0,                                          (*)

∴x1+x2=-,x1·x2=                                                                                                         ②

联立①②解得k=±,此时(*)中Δ>0.

所以直线l的方程为:y=±x+2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
1
2
,一条准线方程为x=4.
(1)求椭圆E的标准方程;
(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M,设直线OM的斜率为k1,直线BP的斜率为k2,求证:k1k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•枣庄一模)已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,椭圆上一点到一个焦点的最大值为3,圆C2x2+y2+8x-2
3
y+7=0
,点A是椭圆上的顶点,点P是椭圆C1上不与椭圆顶点重合的任意一点.
(1)求椭圆C1的方程;
(2)若直线AP与圆C2相切,求点P的坐标;
(3)若点M是椭圆C1上不与椭圆顶点重合且异于点P的任意一点,点M关于x轴的对称点是点N,直线MP,NP分别交x轴于点E(x1,0),点F(x2,0),探究x1•x2是否为定值.若为定值,求出该定值;若不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•静安区一模)已知椭圆
x2
a2
+
y2
b2
=1
的两个焦点为F1(-c,0)、F2(c,0),c2是a2与b2的等差中项,其中a、b、c都是正数,过点A(0,-b)和B(a,0)的直线与原点的距离为
3
2

(1)求椭圆的方程;
(2)点P是椭圆上一动点,定点A1(0,2),求△F1PA1面积的最大值;
(3)已知定点E(-1,0),直线y=kx+t与椭圆交于C、D相异两点.证明:对任意的t>0,都存在实数k,使得以线段CD为直径的圆过E点.

查看答案和解析>>

科目:高中数学 来源: 题型:044

有如下命题:已知椭圆=1,AA′是椭圆的长轴,P(x1,y1)是椭圆上异于AA′的任意一点,过P点斜率为-的直线l,若直线l上的两点MM′在x轴上的射影分别为AA′,则?

       (1)|AM|·|AM′|为定值4.

       (2)由AA′、M′、M四点构成的四边形面积的最小值为12.??

       请分析上述命题,并根据上述问题对椭圆=1(a>b>0)构造出一个具有一般性结论的命题.写出这一命题,判断这一命题的真假.

      

查看答案和解析>>

科目:高中数学 来源: 题型:

有如下命题:已知椭圆=1,AA′是椭圆的长轴,P(x1,y1)是椭圆上异于AA′的任意一点,过P点斜率为-的直线l,若直线l上的两点MM′在x轴上的射影分别为AA′,则

       (1)|AM|·|AM′|为定值4.

       (2)由AA′、M′、M四点构成的四边形面积的最小值为12.?

       请分析上述命题,并根据上述问题对椭圆=1(a>b>0)构造出一个具有一般性结论的命题.写出这一命题,判断这一命题的真假.

      

查看答案和解析>>

同步练习册答案