已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an(n∈N*).
(Ⅰ)证明:数列{an+1-an}是等比数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若数列{bn}满足4b1-14b2-1…4bn-1=(an+1)bn(n∈N*),证明{bn}是等差数列.
分析:(Ⅰ)利用等比数列的定义,构造
=q≠0进行证明;
(Ⅱ)利用(Ⅰ)可先求a
n+1-a
n=2
n,利用叠加法可得a
n=(a
n-a
n-1)+(a
n-1-a
n-2)+…+(a
2-a
1)+a
1,从而可求a
n;
(Ⅲ)由已知可得2[(b
1+b
2+…+b
n)-n]=nb
n,利用递推公式可得2[(b
1+b
2+…+b
n+b
n+1)-(n+1)]=(n+1)b
n+1结合两式可证.
解答:解:(Ⅰ)证明:∵a
n+2=3a
n+1-2a
n,
∴a
n+2-a
n+1=2(a
n+1-a
n),
∵a
1=1,a
2=3,
∴
=2(n∈N*).
∴{a
n+1-a
n}是以a
2-a
1=2为首项,2为公比的等比数列.
(Ⅱ)解:由(Ⅰ)得a
n+1-a
n=2
n(n∈N
*),
∴a
n=(a
n-a
n-1)+(a
n-1-a
n-2)++(a
2-a
1)+a
1=2
n-1+2
n-2++2+1
=2
n-1(n∈N
*).
(Ⅲ)证明:∵
4b1-14b2-14bn-1=(an+1)bn,
∴
4b1+b2+…+bn-n=
2nbn∴2[(b
1+b
2+…+b
n)-n]=nb
n,①
2[(b
1+b
2+…+b
n+b
n+1)-(n+1)]=(n+1)b
n+1.②
②-①,得2(b
n+1-1)=(n+1)b
n+1-nb
n,
即(n-1)b
n+1-nb
n+2=0.③
nb
n+2-(n+1)b
n+1+2=0.④
④-③,得nb
n+2-2nb
n+1+nb
n=0,
即b
n+2-2b
n+1+b
n=0,∴b
n+2-b
n+1=b
n+1-b
n(n∈N
*),
∴{b
n}是等差数列.
点评:本小题主要考查数列、不等式等基本知识的综合运用,考查化归的数学思想方法在解题中的运用,考查综合解题能力.