精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2sin2(
π
4
-x)-2
3
cos2x+
3

(I)求f(x)最小正周期和单调递减区间;
(II)若f(x)<m+2在x∈[0,
π
6
]
上恒成立,求实数m的取值范围.
(I)∵函数f(x)=2sin2(
π
4
-x)-2
3
cos2x+
3

f(x)=1-cos(
π
2
-2x)-
3
cos2x=1-sin2x-
3
cos2x=-2sin(2x+
π
3
)+1

T=
2

-
π
2
+2kπ≤2x+
π
3
π
2
+2kπ

-
5
12
π+kπ≤x≤
π
12
+kπ

故f(x)的递减区间:[-
5
12
π+kπ,
π
12
+kπ](k∈z)
…(6分)
(II)由f(x)<m+2在x∈[0,
π
6
]
上恒成立,
得f(x)max<m+2,x∈[0,
π
6
]

0≤x≤
π
6
,有
π
3
≤2x+
π
3
2
3
π

3
2
≤sin(2x+
π
3
)≤1

-1≤f(x)≤1-
3

m+2>1-
3

m>-1-
3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案