【题目】已知椭圆的离心率为,为椭圆上任意一点,且已知.
(1)若椭圆的短轴长为,求的最大值;
(2)若直线交椭圆的另一个点为,直线交轴于点,点关于直线对称点为,且,三点共线,求椭圆的标准方程.
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,短轴的一个端点到右焦点的距离为2.
(1)求椭圆的方程;
(2)设分别为椭圆的左、右顶点,如图,过点分别作直线与,设直线交椭圆于另一点交椭圆于另一点,分别过和作椭圆的两条切线,且两条切线交于点,分别过和作椭圆的两条切线,且两条切线交于点.证明:点在直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为:(为参数,已知直线,直线以坐标原点为极点,x轴正半轴为极轴,建立极坐标系.
(1)求曲线C以及直线,的极坐标方程;
(2)若直线与曲线C分别交于O、A两点,直线与曲线C分别交于O、B两点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知以线段EF为直径的圆内切于圆O:x2+y2=16.
(1)若点F的坐标为(﹣2,0),求点E的轨迹C的方程;
(2)在(1)的条件下,轨迹C上存在点T,使得,其中M,N为直线y=kx+b(b≠0)与轨迹C的交点,求△MNT的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率,是椭圆上一点.
(1)求椭圆的方程;
(2)若直线的斜率为,且直线交椭圆于、两点,点关于原点的对称点为,点是椭圆上一点,判断直线与的斜率之和是否为定值,如果是,请求出此定值,如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线:上一点到其焦点的距离为2.
(Ⅰ)求抛物线的标准方程;
(Ⅱ)设抛物线的准线与轴交于点,直线过点且与抛物线交于,两点(点在点,之间),点满足,求与的面积之和取得最小值时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地开发一片荒地,如图,荒地的边界是以C为圆心,半径为1千米的圆周.已有两条互相垂直的道路OE,OF,分别与荒地的边界有且仅有一个接触点A,B.现规划修建一条新路(由线段MP,,线段QN三段组成),其中点M,N分别在OE,OF上,且使得MP,QN所在直线分别与荒地的边界有且仅有一个接触点P,Q,所对的圆心角为.记∠PCA=(道路宽度均忽略不计).
(1)若,求QN的长度;
(2)求新路总长度的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com