【题目】如图,在六面体中,平面平面,平面,,,且.
(1)求证:平面;
(2)求二面角的余弦值.
【答案】(1)详见解析;(2).
【解析】
(1)设DG的中点为M,连结AM,FM,则DEFM是平行四边形,从而MF∥DE,且MF=DE,进而AB∥DE,推导出四边形ABFM是平行四边形,从而BF∥AM,由此能证明BF∥平面ACGD.
(2)以DE,DG,DA分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角D﹣CG﹣F的余弦值.
(1)证明:设的中点为,连接,则是平行四边形,
所以且,因为平面平面,
又平面平面,平面平面,
所以,因为,所以且,
所以四边形是平行四边形,所以,又平面,平面,
故平面.
(2)由题意可得:两两垂直,故以分别为轴、轴、轴建立空间直角坐标系,令,
则,,,,,,
所以,设平面的法向量,则
,令,则,
因为平面的法向量,
所以
由于所求二面角为锐二面角,所以二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,平面,为边上一点,,.
(1)证明:平面平面.
(2)若,试问:是否与平面平行?若平行,求三棱锥的体积;若不平行,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种设备随着使用年限的增加,每年的维护费相应增加.现对一批该设备进行调查,得到这批设备自购入使用之日起,前5年平均每台设备每年的维护费用大致如表:
年份(年) | |||||
维护费(万元) |
(I)从这年中随机抽取两年,求平均每台设备每年的维护费用至少有年多于万元的概率;
(II)求关于的线性回归方程;若该设备的价格是每台万元,你认为应该使用满五年换一次设备,还是应该使用满八年换一次设备?并说明理由.
参考公式:用最小二乘法求线性回归方程的系数公式:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着我国经济实力的不断提升,居民收人也在不断增加。某家庭2018年全年的收入与2014年全年的收入相比增加了一倍,实现翻番.同时该家庭的消费结构随之也发生了变化,现统计了该家庭这两年不同品类的消费额占全年总收入的比例,得到了如下折线图:
则下列结论中正确的是( )
A. 该家庭2018年食品的消费额是2014年食品的消费额的一半
B. 该家庭2018年教育医疗的消费额与2014年教育医疗的消费额相当
C. 该家庭2018年休闲旅游的消费额是2014年休闲旅游的消费额的五倍
D. 该家庭2018年生活用品的消费额是2014年生活用品的消费额的两倍
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点是抛物线上一点,为的焦点.
(1)若,是上的两点,证明:,,依次成等比数列.
(2)过作两条互相垂直的直线与的另一个交点分别交于,(在的上方),求向量在轴正方向上的投影的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着我国经济实力的不断提升,居民收人也在不断增加。某家庭2018年全年的收入与2014年全年的收入相比增加了一倍,实现翻番.同时该家庭的消费结构随之也发生了变化,现统计了该家庭这两年不同品类的消费额占全年总收入的比例,得到了如下折线图:
则下列结论中正确的是( )
A. 该家庭2018年食品的消费额是2014年食品的消费额的一半
B. 该家庭2018年教育医疗的消费额与2014年教育医疗的消费额相当
C. 该家庭2018年休闲旅游的消费额是2014年休闲旅游的消费额的五倍
D. 该家庭2018年生活用品的消费额是2014年生活用品的消费额的两倍
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com