精英家教网 > 高中数学 > 题目详情

【题目】如图,在六面体中,平面平面平面,且.

(1)求证:平面

(2)求二面角的余弦值.

【答案】(1)详见解析;(2).

【解析】

(1)设DG的中点为M,连结AM,FM,则DEFM是平行四边形,从而MF∥DE,且MF=DE,进而AB∥DE,推导出四边形ABFM是平行四边形,从而BF∥AM,由此能证明BF∥平面ACGD.

(2)以DE,DG,DA分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角D﹣CG﹣F的余弦值.

(1)证明:设的中点为,连接,则是平行四边形,

所以,因为平面平面

又平面平面,平面平面

所以,因为,所以

所以四边形是平行四边形,所以,又平面平面

平面.

(2)由题意可得:两两垂直,故以分别为轴、轴、轴建立空间直角坐标系,令

所以,设平面的法向量,则

,令,则

因为平面的法向量

所以

由于所求二面角为锐二面角,所以二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面边上一点,.

(1)证明:平面平面.

(2)若,试问:是否与平面平行?若平行,求三棱锥的体积;若不平行,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种设备随着使用年限的增加,每年的维护费相应增加.现对一批该设备进行调查,得到这批设备自购入使用之日起,前5年平均每台设备每年的维护费用大致如表:

年份(年)

维护费(万元)

(I)从这年中随机抽取两年,求平均每台设备每年的维护费用至少有年多于万元的概率;

(II)求关于的线性回归方程;若该设备的价格是每台万元,你认为应该使用满五年换一次设备,还是应该使用满八年换一次设备?并说明理由.

参考公式:用最小二乘法求线性回归方程的系数公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)若处取得极值,求过点且与处的切线平行的直线方程;

(II)当函数有两个极值点,且时,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是双曲线的右支上一点,分别为双曲线的左右焦点,的内切圆的圆心横坐标为( )

A. B. 2C. D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着我国经济实力的不断提升,居民收人也在不断增加。某家庭2018年全年的收入与2014年全年的收入相比增加了一倍,实现翻番.同时该家庭的消费结构随之也发生了变化,现统计了该家庭这两年不同品类的消费额占全年总收入的比例,得到了如下折线图:

则下列结论中正确的是( )

A. 该家庭2018年食品的消费额是2014年食品的消费额的一半

B. 该家庭2018年教育医疗的消费额与2014年教育医疗的消费额相当

C. 该家庭2018年休闲旅游的消费额是2014年休闲旅游的消费额的五倍

D. 该家庭2018年生活用品的消费额是2014年生活用品的消费额的两倍

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其导函数的最大值为.

(1)求实数的值;

(2)若,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是抛物线上一点,的焦点.

(1)若上的两点,证明:依次成等比数列.

(2)过作两条互相垂直的直线与的另一个交点分别交于(的上方),求向量轴正方向上的投影的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着我国经济实力的不断提升,居民收人也在不断增加。某家庭2018年全年的收入与2014年全年的收入相比增加了一倍,实现翻番.同时该家庭的消费结构随之也发生了变化,现统计了该家庭这两年不同品类的消费额占全年总收入的比例,得到了如下折线图:

则下列结论中正确的是( )

A. 该家庭2018年食品的消费额是2014年食品的消费额的一半

B. 该家庭2018年教育医疗的消费额与2014年教育医疗的消费额相当

C. 该家庭2018年休闲旅游的消费额是2014年休闲旅游的消费额的五倍

D. 该家庭2018年生活用品的消费额是2014年生活用品的消费额的两倍

查看答案和解析>>

同步练习册答案