精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.

(1)求圆的直角坐标方程;

(2)设,直线的参数方程是为参数),已知与圆交于两点,且,求的普通方程.

【答案】(1);(2).

【解析】分析:(1)利用 代入即可得圆的直角坐标方程;(2)将直线的参数方程代入圆的直角坐标方程中,化简得利用韦达定理以及直线参数的几何意义可得从而可得结果.

详解(1)将

代入圆的极坐标方程

化为圆的标准方程为.

(2)将直线的参数方程为参数)

代入圆的直角坐标方程中,化简得

两点所对应的参数分别为

由韦达定理知

同号 又∵, ∴

由①②可知

解得,∴

的普通方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,其中

(1)若,求的值;

(2)对于每一个给定的正整数,求关于的方程所有解的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

以平面直角坐标系的原点为极点, 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线的参数方程为为参数),圆的极坐标方程为.

1求直线的普通方程与圆的直角坐标方程

2设曲线与直线交于两点,若点的直角坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数互为相反数,且,函数的定义域为.

1)求的值;

2)若,求的值域;

3)若函数的最大值为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x),g(x)分别由下表给出,

f[g(1)]的值为________,满足f[g(x)]>g[f(x)]x的值是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ABC是△ABC的三个内角,向量m=(-1, ),n=(cosA,sinA),且m·n=1.

(1)求角A

(2)若=-3,求tanC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过研究学生的学习行为,心理学家发现,学生接受能力依赖于老师引入概念和描述问题所用的时间,讲座开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用表示学生掌握和接收概念的能力(的值越大,表示接受能力越强),表示提出和讲授概念的时间(单位:分钟),可以有以下公式:

(1)开讲多少分钟后,学生的接受能力最强?能维持多长时间?

(2)开讲5分钟与开讲20分钟比较,学生的接受能力何时强一些?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的焦点坐标分別为,,为椭圆上一点,满足

(1) 求椭圆的标准方程:

(2) 设直线与椭圆交于两点,点,若的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了引导居民合理用水,某市决定全面实施阶梯水价.阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价,具体划分标准如表:

阶梯级别

第一阶梯水量

第二阶梯水量

第三阶梯水量

月用水量范围(单位:立方米)

从本市随机抽取了10户家庭,统计了同一月份的月用水量,得到如图茎叶图:

(1)现要在这10户家庭中任意选取3家,求取到第二阶梯水量的户数的分布列与数学期望;

(2)用抽到的10户家庭作为样本估计全市的居民用水情况,从全市依次随机抽取10户,若抽到户月用水量为二阶的可能性最大,求的值.

查看答案和解析>>

同步练习册答案