分析 将容器容积表示成底面短边长x的函数关系,然后利用导数求此函数的最值,注意如何选择自变量.
解答 解:设容器底面短边长为x m,
则另一边长为(x+0.5)m,高为3.2-2x.
由3.2-2x>0和x>0,
得0<x<1.6,
设容器的容积为ym3,
则有y=x(x+0.5)(3.2-2x),(0<x<1.6).
整理,得y=-2x3+2.2x2+1.6x,
∴y′=-6x2+4.4x+1.6.--6分
令 y′=0,有x=1.
从而在定义域(0,1.6)内只有在x=1 处使y取最大值,
这时,长x+0.5=1.5m,宽x=1m,
故容器底面的宽为1米.--12分
点评 本小题主要考查应用所学导数的知识、思想和方法解决实际问题的能力,建立函数式、解方程、不等式、最大值等基础知识.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $[{0,\frac{π}{2}})∪[{\frac{2π}{3},π})$ | B. | $[{\frac{2π}{3},π})$ | C. | $[{0,\frac{π}{2}})∪[{\frac{5π}{6},π})$ | D. | $[{\frac{5π}{6},π})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 相交 | B. | 相切 | C. | 相离 | D. | 不确定 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com