【题目】已知点及圆.
(1)若直线过点且与圆心的距离为1,求直线的方程;
(2)设过点的直线与圆交于两点,当时,求以线段为直径的圆的方程;
(3)设直线与圆交于两点,是否存在实数,使得过点的直线垂直平分弦?若存在,求出实数的值;若不存在,请说明理由.
【答案】(1)或;(2);(3)不存在.
【解析】
(1)设出直线方程,结合点到直线距离公式,计算参数,即可。(2)证明得到点P为MN的中点,建立圆方程,即可。(3)将直线方程代入圆方程,结合交点个数,计算a的范围,计算直线的斜率,计算a的值,即可。
(1)直线斜率存在时,设直线的斜率为,则方程为,即.又圆的圆心为,半径,由,解得.
所以直线方程为,即.
当的斜率不存在时,的方程为,经验证也满足条件.
即直线的方程为或.
(2)由于,而弦心距,
所以.
所以恰为的中点.
故以为直径的圆的方程为.
(3)把直线代入圆的方程,消去,整理得.
由于直线交圆于两点,
故,
即,解得.
则实数的取值范围是.
设符合条件的实数存在,
由于垂直平分弦,故圆心 必在上.所以的斜率,
而,
所以.由于 ,
故不存在实数,使得过点的直线垂直平分弦.
科目:高中数学 来源: 题型:
【题目】已知,函数.
(1)当时,解不等式;
(2)若关于的方程的解集中恰有两个元素,求的取值范围;
(3)设,若对任意,函数在区间上的最大值与最小值的和不大于,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列说法:
①集合与集合是相等集合;
②不存在实数,使为奇函数;
③若,且f(1)=2,则;
④对于函数 在同一直角坐标系中,若,则函数的图象关于直线对称;
⑤对于函数 在同一直角坐标系中,函数与的图象关于直线对称;其中正确说法是____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】求满足下列条件的直线方程.
(1)经过点A(-1,-3),且斜率等于直线3x+8y-1=0斜率的2倍;
(2)过点M(0,4),且与两坐标轴围成三角形的周长为12.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知=(2﹣sin(2x+),﹣2),=(1,sin2x),f(x)= , (x∈[0,])
(1)求函数f(x)的值域;
(2)设△ABC的内角A,B,C的对边长分别为a,b,c,若f()=1,b=1,c= , 求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, .
(1)若函数在上是减函数,求实数的取值范围;
(2)是否存在整数, ,使得的解集恰好是,若存在,求出, 的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】银川一中为研究学生的身体素质与课外体育锻炼时间的关系,抽取在校200名学生的课外体育锻炼平均每天运动的时间(单位:分钟)进行调查,将收集的数据分成,六组,并作出频率分布直方图(如图),将日均课外体育锻炼时间不低于40分钟的学生评价为“课外体育达标”.
课外体育不达标 | 课外体育达标 | 合计 | |
男 | |||
女 | |||
合计 |
(1)请根据直方图中的数据填写下面的列联表,并通过计算判断是否能在犯错误的概率不超过的前提下认为“课外体育达标”与性别有关?
(2)在这两组中采取分层抽样,抽取6人,再从这6名学生中随机抽取2人参加体育知识问卷调查,求这2人中一人来自“课外体育达标”和一人来自“课外体育不达标”的概率.
附参考公式与:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com