精英家教网 > 高中数学 > 题目详情

【题目】已知曲线C1的参数方程是 (φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ2.正方形ABCD的顶点都在C2上,且ABCD依逆时针次序排列,点A的极坐标为.

(1)求点ABCD的直角坐标;

(2)PC1上任意一点,求|PA|2|PB|2|PC|2|PD|2的取值范围.

【答案】1A(1)B(1)C(1,,- )D(,-1).(2[32,52]

【解析】(1)由已知可得AB

CD

A(1)B(1)C(1,,- )D(,-1)

(2)P(2cosφ3sinφ),令S|PA|2|PB|2|PC|2|PD|2,则S16cos2φ36sin2φ163220sin2φ.因为0≤sin2φ≤1

所以S的取值范围是[32,52]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知圆O外有一点P,作圆O的切线PM,M为切点,过PM的中点N,作割线NAB,交圆于A、B两点,连接PA并延长,交圆O于点C,连续PB交圆O于点D,若MC=BC.

(1)求证:△APM∽△ABP;
(2)求证:四边形PMCD是平行四边形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心, OA为半径作圆.

(1)证明:直线AB与⊙O相切;
(2)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M是满足下列条件的函数f(x)的全体:存在非零常数T,对任意x∈R,有f(x+T)=Tf(x)成立.给出如下函数:①f(x)=x;②f(x)=2x;③f(x)= ;④f(x)=x2;则属于集合M的函数个数为(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上的奇函数,且在区间(0,+∞)上是单调递增,若 ,△ABC的内角满足f(cosA)<0,则A的取值范围是(
A.(
B.( ,π)

C.(0, )∪( ,π)
D.( )∪( ,π)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为F1有一小球A 从F1处以速度v开始沿直线运动,经椭圆壁反射(无论经过几次反射速度大小始终保持不变,小球半径忽略不计),若小球第一次回到F1时,它所用的最长时间是最短时间的5倍,则椭圆的离心率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)的定义域,值域分别为A,B,且A∩B是单元集,下列命题中:
①若A∩B={a},则f(a)=a;
②若B不是单元集,则满足f[f(x)]=f(x)的x值可能不存在;
③若f(x)具有奇偶性,则f(x)可能为偶函数;
④若f(x)不是常数函数,则f(x)不可能为周期函数.
正确命题的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= ,则该函数在(﹣∞,+∞)上是(
A.单调递减无最小值
B.单调递减有最小值
C.单调递增无最大值
D.单调递增有最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为 与p,且乙投球2次均未命中的概率为
(1)求乙投球的命中率p;
(2)若甲投球1次,乙投球2次,两人共命中的次数记为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案