精英家教网 > 高中数学 > 题目详情

【题目】某百货商店今年春节期间举行促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商店经理对春节前天参加抽奖活动的人数进行统计,表示第天参加抽奖活动的人数,得到统计表格如下:

1

2

3

4

5

6

7

5

8

8

10

14

15

17

(Ⅰ)经过进一步统计分析,发现具有线性相关关系.请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(Ⅱ)该商店规定:若抽中“一等奖”,可领取元购物券;抽中“二等奖”可领取元购物券;抽中“谢谢惠顾”,则没有购物券.已知一次抽奖活动获得“一等奖”的概率为,获得“二等”的概率为.现有张、王两位先生参与了本次活动,且他们是否中奖相互独立,求此二人所获购物券总金额的分布列及数学期望.

参考公式:.

【答案】(Ⅰ);(Ⅱ)答案见解析.

【解析】试题分析:

()由题意可得,则关于的线性回归方程为.

()由题意可知二人所获购物券总金额的可能取值有元,它们所对应的概率分别为:.据此可得分布列,计算相应的数学期望为.

试题解析:

()依题意:

关于的线性回归方程为.

()二人所获购物券总金额的可能取值有元,它们所对应的概率分别为:

.

所以,总金额的分布列如下表:

0

300

600

900

1200

总金额的数学期望为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某二手车交易市场对某型号二手汽车的使用年数与销售价格(单位:万元/辆)进行整理,得到如下的对应数据:

使用年数

2

4

6

8

10

售价

16

13

9.5

7

4.5

(1)试求关于的回归直线方程;(参考公式:.)

(2)已知每辆该型号汽车的收购价格为万元,根据(1)中所求的回归方程,预测为何值时,销售一辆该型号汽车所获得的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家祖冲之的儿子祖暅首先提出来的,祖暅原理的内容是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等.已知,两个平行平面间有三个几何体,分别是三棱锥、四棱锥、圆锥(高度都为),其中:三棱锥的底面是正三角形(边长为),四棱锥的底面是有一个角为的菱形(边长为),圆锥的体积为,现用平行于这两个平行平面的平面去截三个几何体,如果截得的三个截面的面积相等,那么,下列关系式正确的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点与椭圆 的一个焦点重合,点在抛物线上,过焦点的直线交抛物线于两点.

(Ⅰ)求抛物线的方程以及的值;

(Ⅱ)记抛物线的准线轴交于点,试问是否存在常数,使得都成立?若存在,求出实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表和频率分布直方图如下:

(1)求出表中M,p及图中a的值;

(2)若该校高三学生有240人,试估计高三学生参加社区服务的次数在区间(10,15)内的人数;

(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以原点为极点,轴的非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为:,在平面直角坐标系中,直线的方程为为参数).

(1)求曲线和直线的直角坐标方程;

(2)已知直线交曲线两点,求两点的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线过点,其参数方程为为参数,),以为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)求已知曲线和曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为分别为椭圆的左、右顶点,点满足

)求椭圆的方程;

)设直线经过点且与交于不同的两点,试问:在轴上是否存在点,使得直线 与直线的斜率的和为定值?若存在,请求出点的坐标及定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,直角梯形中,分别是上的点,且.沿将四边形翻折至,连接,得到多面体,且

Ⅰ)求多面体的体积;

Ⅱ)求证:平面⊥平面

查看答案和解析>>

同步练习册答案