【题目】某外卖企业两位员工今年月某天日派送外卖量的数据(单位:件),如茎叶图所示针对这天的数据,下面说法错误的是( )
A.阿朱的日派送量的众数为B.阿紫的日派送量的中位数为
C.阿朱的日派送量的中位数为D.阿朱的日派送外卖量更稳定
科目:高中数学 来源: 题型:
【题目】设是一个的方格表,在每一个小方格内各填一个正整数.若中的一个方格表的所有数的和为10的倍数,则称其为“好矩形”;若中的一个的小方格不包含于任何一个好矩形,则称其为“坏格”.求中坏格个数的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分,(1)小问7分,(2)小问5分)
设函数
(1)若在处取得极值,确定的值,并求此时曲线在点处的切线方程;
(2)若在上为减函数,求的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等比数列{}的公比为 q(q > 0,q = 1),前 n 项和为 Sn,且 2a1a3 = a4,数列{}的前 n 项和 Tn 满足2Tn = n(bn - 1),n ∈N*,b2 = 1.
(1) 求数列 {},{}的通项公式;
(2) 是否存在常数 t,使得 {Sn+ } 为等比数列?说明理由;
(3) 设 cn =,对于任意给定的正整数 k(k ≥2), 是否存在正整数 l,m(k < l < m), 使得 ck,c1,cm 成等差数列?若存在,求出 l,m(用 k 表示),若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了各级城市的大街小巷,为了解我市的市民对共享单车的满意度,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了人进行分析.若得分低于分,说明不满意,若得分不低于分,说明满意,调查满意度得分情况结果用茎叶图表示如图1.
(Ⅰ)根据茎叶图完成下面列联表,并根据以上数据,判断是否有的把握认为满意度与年龄有关;
满意 | 不满意 | 合计 | |
岁以下 | |||
岁以上 | |||
合计 |
(Ⅱ)先采用分层抽样的方法从岁及以下的网友中选取人,再从这人中随机选出人,将频率视为概率,求选出的人中至少有人是不满意的概率.
(Ⅲ)将频率视为概率,从参与调查的岁以上的网友中,随机选取人,记其中满意度为满意的人数为,求的分布列和数学期望.
参考格式:,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知椭圆的离心率为,且右焦点到右准线的距离为1.过轴上一点 为常数,且的直线与椭圆交于两点,与交于点,是弦的中点,直线与交于点.
(1)求椭圆的标准方程;
(2)试判断以为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数学的对称美在中国传统文化中多有体现,譬如如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的和谐美.如果能够将圆的周长和面积同时平分的函数称为这个圆的“优美函数”,下列说法正确的是( )
A.对于任意一个圆,其“优美函数”有无数个
B.可以是某个圆的“优美函数”
C.正弦函数可以同时是无数个圆的“优美函数”
D.函数是“优美函数”的充要条件为函数的图象是中心对称图形
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:对于任意,仍为数列中的项,则称数列为“回归数列”.
(1)己知(),判断数列是否为“回归数列”,并说明理由;
(2)若数列为“回归数列”,,,且对于任意,均有成立.①求数列的通项公式;②求所有的正整数s,t,使得等式成立.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com