精英家教网 > 高中数学 > 题目详情

排列

(1)定义:从n个不同元素中取出m(m≤n)个元素,按照一定_________排成一列,叫做从n个不同元素中取出m个元素的一个排列.

(2)排列数定义:从n个不同元素中取出m(m≤n)个元素的_________的个数,叫做从n个不同元素中取出m个元素的排列数,用Amn表示.

(3)排列数公式:=_________.

(4)全排列:n个不同元素全部取出的_________,叫做n个不同元素的一个全排列,n·(n-1)·(n-2)·…·3·2·1=_________.于是排列数公式写成阶乘形式为=_________,规定0!=_________.

答案:
解析:

(1)顺序 (2)所有排列 (3)n(n-1)…(nm+1) (4)排列 n!  1


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

21、对于每项均是正整数的数列A:a1,a2,…,an,定义变换T1,T1将数列A变换成数列T1(A):n,a1-1,a2-1,…,an-1.
对于每项均是非负整数的数列B:b1,b2,…,bm,定义变换T2,T2将数列B各项从大到小排列,然后去掉所有为零的项,得到数列T2(B);
又定义S(B)=2(b1+2b2+…+mbm)+b12+b22+…+bm2.设A0是每项均为正整数的有穷数列,令Ak+1=T2(T1(Ak))(k=0,1,2,…).
(Ⅰ)如果数列A0为5,3,2,写出数列A1,A2
(Ⅱ)对于每项均是正整数的有穷数列A,证明S(T1(A))=S(A);
(Ⅲ)证明:对于任意给定的每项均为正整数的有穷数列A0,存在正整数K,当k≥K时,S(Ak+1)=S(Ak).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•金山区一模)对于集合N={1,2,3,…,n}的每一个非空子集,定义一个“交替和”如下:按照递减的次序重新排列该子集,然后从最大数开始交替地减、加后继的数.例如集合{1,2,4,6,9}的交替和是9-6+4-2+1=6,集合{5}的交替和为5.当集合N中的n=2时,集合N={1,2}的所有非空子集为{1},{2},{1,2},则它的“交替和”的总和S2=1+2+(2-1)=4,请你尝试对n=3、n=4的情况,计算它的“交替和”的总和S3、S4,并根据其结果猜测集合N={1,2,3,…,n}的每一个非空子集的“交替和”的总和Sn=
n•2n-1
n•2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•石景山区二模)已知集合Sn={(x1,x2,…,xn)|x1,x2,…,xn是正整数1,2,3,…,n的一个排列}(n≥2),函数g(x)=
1, x>0
-1,  x<0.

对于(a1,a2,…an)∈Sn,定义:bi=g(ai-a1)+g(ai-a2)+…+g(ai-ai-1),i∈{2,3,…,n},b1=0,称bi为ai的满意指数.排列b1,b2,…,bn为排列a1,a2,…,an的生成列;排列a1,a2,…,an为排列b1,b2,…,bn的母列.
(Ⅰ)当n=6时,写出排列3,5,1,4,6,2的生成列及排列0,-1,2,-3,4,3的母列;
(Ⅱ)证明:若a1,a2,…,an和a′1,a′2,…,a′n为Sn中两个不同排列,则它们的生成列也不同;
(Ⅲ)对于Sn中的排列a1,a2,…,an,定义变换τ:将排列a1,a2,…,an从左至右第一个满意指数为负数的项调至首项,其它各项顺序不变,得到一个新的排列.证明:一定可以经过有限次变换τ将排列a1,a2,…,an变换为各项满意指数均为非负数的排列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•崇明县二模)对于每项均是正整数的数列A:a1,a2,…,an,定义变换T1,T1将数列A变换成数列T1(A):n,a1-1,a2-1,…,an-1;对于每项均是非负整数的数列B:b1,b2,…,bm,定义变换T2,T2将数列B各项从大到小排列,然后去掉所有为零的项,得到数列T2(B);设A0是每项均为正整数的有穷数列,令Ak+1=T2(T1(Ak))(k=0,1,2,…).如果数列A0为4,2,1,则数列A1
A2为3,3,1
A2为3,3,1

查看答案和解析>>

同步练习册答案