精英家教网 > 高中数学 > 题目详情

【题目】已知函数的最小正周期为,函数的图象沿轴向右平移个单位长度后关于轴对称,则下列结论正确的是______.(填序号)

是函数图象的一个对称中心;

在区间上的最小值为-2

的单调递增区间是

④函数的图象与直线时只有一个交点.

【答案】②③

【解析】

根据题意求出函数的关系式,进一步利用正弦型函数的性质,逐项分析求出结果.

由函数的最小正周期公式可得:

函数

将其图象沿轴向右平移个单位长度后得:,由其图象关于轴对称,则,由,即.

对于①,∵,∴故①不正确;

对于②,∵,∴,∴,则在区间上的最小值为-2,故②正确;

对于③,,化简得,的单调递增区间是,故③正确;

对于④,令,即,或,解得,,令,即,函数的图象与直线在区间上有两个交点,故④不正确.

综上,正确的是②③.

故答案为:②③

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为正方形,平面,点为线段的动点.记所成角的最小值为,当为线段中点时,二面角的大小为,二面角的大小为,则的大小关系是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业者岗位分布条形图,则下列结论中不一定正确的是( ).

注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.

A. 互联网行业从业人员中90后占一半以上

B. 互联网行业中从事技术岗位的人数超过总人数的20%

C. 互联网行业中从事运营岗位的人数90后比80前多

D. 互联网行业中从事技术岗位的人数90后比80后多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an},对任意nN*都有(kn+b)(a1+an+p2a1+a2+an),(其中kbp是常数).

1)当k0b3p=﹣4时,求a1+a2+a3++an

2)当k1b0p0时,若a33a915,求数列{an}的通项公式;

3)若数列{an}中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.k1b0p0时,设Sn是数列{an}的前n项和,a2a12,试问:是否存在这样的“封闭数列”{an},使得对任意nN*,都有Sn0,且.若存在,求数列{an}的首项a1的所有取值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求的单调区间;

2)若在上存在一点,使得成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线lymx2+2与圆Cx2+y29交于AB两点,则使弦长|AB|为整数的直线l共有(

A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一个有穷数列的每相邻两项之间插入这两项的和,形成新的数列,我们把这样的操作称为该数列的一次“Z拓展”.如数列121次“Z拓展”后得到数列132,第2次“Z拓展”后得到数列14352.设数列abc经过第n次“Z拓展”后所得数列的项数记为Pn,所有项的和记为Sn.

1)求P1P2

2)若Pn2020,求n的最小值;

3)是否存在实数abc,使得数列{Sn}为等比数列?若存在,求abc满足的条件;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,过椭圆右焦点的直线两点,且椭圆的离心率为.

1)求椭圆的方程;

2上的两点,若四边形的对角线,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有边长均为1的正方形正五边形正六边形及半径为1的圆各一个,在水平桌面上无滑动滚动一周,它们的中心的运动轨迹长分别为,则(

A.B.C.D.

查看答案和解析>>

同步练习册答案