精英家教网 > 高中数学 > 题目详情

【题目】某辆汽车以x km/h的速度在高速公路上匀速行驶考虑到高速公路行车安全要求60≤x≤120时,每小时的油耗所需要的汽油量,其中k为常数,若汽车以120km/h的速度行驶时,每小时的油耗为11.5L.

1k的值

2求该汽车每小时油耗的最小值.

【答案】1 2

【解析】试题分析:(1)将代入每小时的油耗=11.5,解方程可得;(2))该汽车每小时的油耗为y (60≤x≤120),利用导数研究函数的单调性,即可得到该汽车每小时油耗的最小值.

试题解析:1由题意,当x120时, 11.5

k100.

2该汽车每小时的油耗为y L,则

y (60≤x≤120)

求导知,函数在区间上单调递增

答: 升.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定点A(0,1),B(0,﹣1),C(1,0),动点P满足:

(1)求动点P的轨迹方程,并说明方程表示的曲线类型;

(2)当k=2,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的个数是( )
①向量 是共线向量,则A、B、C、D必在同一直线上;
②向量 与向量 平行,则 方向相同或相反;
③若下列向量 满足 ,且 同向,则
④若 ,则 的长度相等且方向相同或相反;
⑤由于零向量方向不确定,故不能与任何向量平行.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的方格纸由若干个边长为1的小正方形并在一起组成,方格纸中有两个定点A,B,点C为小正方形的顶点,且
(1)画出所有的向量 ;
(2)求| |的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(Ⅰ)求上的单调区间;

(Ⅱ)求为自然对数的底数)上的最大值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

直角坐标系中曲线的参数方程为参数),在以坐标原点为极点, 轴正半轴为极轴的极坐标系中, 点的极坐标,在平面直角坐标系中,直线经过点,倾斜角为

(1)写出曲线的直角坐标方程和直线的参数方程;

(2)设直线与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中,且

(1)当时,求函数的单调区间;

(2)设,若存在极大值,且对于的一切可能取值, 的极大值均小于,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,奇函数为(
A.f(x)=3x
B.f(x)=x2
C.f(x)=x2
D.f(x)=( x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为 (α为参数,﹣π<α<0),曲线C2的参数方程为 (t为参数),以O为极点,x轴的正半轴为极轴建立极坐标系.

(1)求曲线C1的极坐标方程和曲线C2的普通方程;

(2射线θ=﹣ 与曲线C1的交点为P,与曲线C2的交点为Q,求线段PQ的长.

查看答案和解析>>

同步练习册答案