精英家教网 > 高中数学 > 题目详情

【题目】已知为坐标原点,点和点,动点满足:.

1)求动点的轨迹曲线的方程并说明是何种曲线;

2)若抛物线的焦点恰为曲线的顶点,过点的直线与抛物线交于两点,,求直线的方程.

【答案】1)动点的轨迹方程为:,点的轨迹是以为焦点的双曲线的右支;

2

【解析】

1)由动点满足,可得到轨迹曲线为双曲线的右支;

2)由(1)可得F的坐标,然后再求出抛物线的方程,设出直线的方程为,后根据焦点弦弦长公式得到关于k的方程,解出即可.

解:(1)根据双曲线的定义:

的轨迹是以为焦点的双曲线的右支

,所以

所以动点的轨迹方程为:.

2)因为曲线的顶点为,所以抛物线的方程为:

当直线斜率不存在时,不满足题意,

设直线

由抛物线的定义知:

所以

代入得:

所以,解得

所以直线的方程为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用,化简,得.设勾股形中勾股比为,若向弦图内随机抛掷颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点EFEF=,则下列结论中错误的是(

A.ACBEB.EF平面ABCD

C.三棱锥A-BEF的体积为定值D.异面直线AE,BF所成的角为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD中,侧面PAD是边长为2的等边三角形且垂直于底 的中点。

1)证明:直线平面

2)点在棱上,且直线与底面所成角为,求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】O为坐标原点,动点M在椭圆C上,该椭圆的左顶点A到直线的距离为

求椭圆C的标准方程;

若线段MN平行于y轴,满足,动点P在直线上,满足证明:过点N且垂直于OP的直线过椭圆C的右焦点F

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的女生人数是男生人数的,男生喜欢抖音的人数占男生人数的,女生喜欢抖音的人数占女生人数若有95%的把握认为是否喜欢抖音和性别有关,则男生至少有( )人.

K2k0

0.050

0.010

k0

3.841

6.635

A. 12B. 6C. 10D. 18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆的左、右焦点分别为,离心率.的直线与椭圆相交于两点,且的周长为.

1)求椭圆的方程;

2)若点位于第一象限,且,求的外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了庆祝第一个农民丰收节,西部山区某村统计了自2011年以来每年的年总收入,其中2018年统计的是1月到8月的总收入,统计结果如图所示.根据图形,下列四个判断中,错误的是(

A.2012年起,年总收入逐年增加B.2017年的年总收入在2016年的基础上翻了番

C.年份数与年总收入成正相关D.由图可预测从2014年起年总收入增长加快

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在矩形中,.将矩形沿对角线翻折形成四面体,若该四面体内接于球,则下列说法错误的是(

A.四面体的体积的最大值是B.球心为线段的中点

C.的表面积随二面角的变化而变化D.的表面积为定值

查看答案和解析>>

同步练习册答案