精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
lg(2x+
1
2x
+m)
的定义域是R,则实数m的取值范围是(  )
A.(-∞,-2)B.(-∞,-1)C.(-1,+∞)D.(-2,+∞)
要使函数有意义,需要满足2x+
1
2x
+m>0且
2x+
1
2x
+m≠1
恒成立,
∵2x>0,∴2x+
1
2x
≥2,当且仅当2x=
1
2x
,即x=0时取等号,
所以令2x+
1
2x
+m≥2+m>0
,解得m>-2,
2x+
1
2x
+m≠1
,令2x=t>0,化为t+
1
t
+m≠1,
∵t>0,∴当t2+(m-1)t+1=0没有解或解为负数时,t2+(m-1)t+1≠0,
若△=(m-1)2-4<0,解得:-1<m<3,方程无解,满足题意;
若t2+(m-1)t+1=0没有正数解,根据两根之积为1>0,得到两根为同号,
故要保证两根为负数,需
△=(m-1)2-4≥0
1-m<0
,解得m≥3,
综上,实数m的范围是m>-1,
则实数m的取值范围是(-1,+∞).
故选C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案