精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,且过点(
3
1
2
).
(1)求椭圆C的方程;
(2)设椭圆的左、右顶点分别为A、B,点S是椭圆上位于x轴上方的动点,直线AS,BS与直线l:x=
34
15
分别交于M、N两点,求线段MN长度的最小值.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(1)由椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,且过点(
3
1
2
),可得
c
a
=
3
2
3
a2
+
1
4b2
=1
a2=b2+c2
,解得a,b即可.
(2)设直线AS的斜率为k>0,利用kAS•kBS=-
b2
a2
,可得kBS=-
1
4k
.直线AS,BS的方程分别为:y=k(x+2),y=-
1
4k
(x-2)
.令x=
34
15
,可得M,N.求出|MN|再利用基本不等式的性质即可得出.
解答: 解:(1)∵椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,且过点(
3
1
2
),
c
a
=
3
2
3
a2
+
1
4b2
=1
a2=b2+c2
,解得a=2,b=1.
∴椭圆C的方程为:
x2
4
+y2=1

(2)设直线AS的斜率为k>0,
∵kAS•kBS=-
1
4

kBS=-
1
4k

∴直线AS,BS的方程分别为:
y=k(x+2),y=-
1
4k
(x-2)

令x=
34
15
,则M(
34
15
64k
15
)
,N(
34
15
,-
1
15k
)

∴|MN|=
64k
15
+
1
15k
1
15
×2
64k•
1
k
=
16
15
,当且仅当k=
1
8
时取等号.
∴线段MN长度的最小值为
16
15
点评:本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、基本不等式的性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P为抛物线y=
1
2
x2上的动点,点P在x轴上的射影为M,点A的坐标是(6,
17
2
),则|PA|+|PM|的最小值是(  )
A、8
B、
19
2
C、10
D、
21
2

查看答案和解析>>

科目:高中数学 来源: 题型:

全集U={1,-2,3,-4,5,-6},M={1,-2,3,-4},则∁UM(  )
A、{1,3}
B、{5,-6}
C、{1,5}
D、{-4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4ax(a>0)的焦点为A,以B(a+4,0)为圆心,|BA|为半径,在x轴上方画半圆,设抛物线与半圆交于不同两点M、N,P为线段MN的中点.求|AM|+|AN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点分别是F1,F2,过点F1的直线l交椭圆C于A,B两点,若△AF2B的周长为16,过焦点F1且垂直于长轴的直线被椭圆截得的线段长为2,则椭圆C的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线x2-2y2=2的左、右两焦点为F1,F2,动点P满足|PF1|+|PF2|=4,
(Ⅰ)求动点P的轨迹W的方程;
(Ⅱ)若线段AB是曲线W的长为2的动弦,O为坐标原点,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若椭圆mx2+ny2=1(m>0,n>0)与直线x+y-1=0交于A,B两点,若m:n=1:
2
,则过原点与线段AB的中点M的连线的斜率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

向由平面直角坐标系中的四点(0,0),(1,0),(1,1),(0,1)所围成的平面区域中任意抛掷一粒黄豆,则该黄豆落在曲线y=x3和y=
3x
所围成的平面区域内的概率为(  )
A、
1
4
B、
1
3
C、
1
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

方程log4x+x-4=0的解所在区间是(  )
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,+∞)

查看答案和解析>>

同步练习册答案