【题目】已知等比数列满足,数列满足.
(1)求数列, 的通项公式;
(2)令,求数列的前项和;
(3)若,求对所有的正整数都有成立的的取值范围.
科目:高中数学 来源: 题型:
【题目】某学校课题组为了研究学生的数学成绩与学生细心程度的关系,在本校随机调查了100名学生进行研究.研究结果表明:在数学成绩及格的60名学生中有45人比较细心,另外15人比较粗心;在数学成绩不及格的40名学生中有10人比较细心,另外30人比较粗心.
(1)试根据上述数据完成列联表;
数学成绩及格 | 数学成绩不及格 | 合计 | |
比较细心 | 45 | ||
比较粗心 | |||
合计 | 60 | 100 |
(2)能否在犯错误的概率不超过0.001的前提下认为学生的数学成绩与细心程度有关系?
参考数据:独立检验随机变量的临界值参考表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数有如下结论:
①该函数为偶函数;
②若,则;
③其单调递增区间是;
④值域是;
⑤该函数的图象与直线有且只有一个公共点.(本题中是自然对数的底数)
其中正确的是__________.(请把正确结论的序号填在横线上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分15分)已知椭圆:过点,离心率为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设分别为椭圆的左、右焦点,过的直线与椭圆交于不同两点,记的内切圆的面积为,求当取最大值时直线的方程,并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在对人们休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人,女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.
(Ⅰ)根据以上数据建立一个2×2列联表;
(Ⅱ)能否在犯错误的概率不超过0.05的前提下认为性别与休闲方式有关系?
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:在数列中,若为常数)则称为“等方差数列”,下列是对“等方差数列”的有关判断( )
①若是“等方差数列”,在数列 是等差数列;
②是“等方差数列”;
③若是“等方差数列”,则数列为常)也是“等方差数列”;
④若既是“等方差数列”又是等差数列,则该数列是常数数列.
其中正确命题的个数为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com