精英家教网 > 高中数学 > 题目详情

【题目】已知等比数列满足,数列满足.

(1)求数列 的通项公式;

(2)令,求数列的前项和

(3)若,求对所有的正整数都有成立的的取值范围.

【答案】(1) ;(2)(3)见解析

【解析】试题分析:

(1)首先由题意求得首项和公比,则数列的通项公式是,然后利用递推关系可得的通项公式是;

(2)错位相减可得数列的前项和

(3)结合(1)(2)的结论可得数列为单调递减数列,然后结合恒成立的条件可得.

试题解析:

(1)设等比数列的公比为

,得,所以

故数列是以2为首项, 为公比的等比数列,所以

因为,所以

所以是首项为1,公差为2的等差数列

所以

(2)因为

所以

③﹣④得

所以

(3)证明:由(1)知,

因为

所以数列为单调递减数列

时, ,即得最大值为1

,所以

而当时, ,当且仅当时取等号

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校课题组为了研究学生的数学成绩与学生细心程度的关系,在本校随机调查了100名学生进行研究.研究结果表明:在数学成绩及格的60名学生中有45人比较细心,另外15人比较粗心;在数学成绩不及格的40名学生中有10人比较细心,另外30人比较粗心.

(1)试根据上述数据完成列联表;

数学成绩及格

数学成绩不及格

合计

比较细心

45

比较粗心

合计

60

100

(2)能否在犯错误的概率不超过0.001的前提下认为学生的数学成绩与细心程度有关系?

参考数据:独立检验随机变量的临界值参考表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数有如下结论:

①该函数为偶函数;

②若,则

③其单调递增区间是

④值域是

⑤该函数的图象与直线有且只有一个公共点.(本题中是自然对数的底数)

其中正确的是__________.(请把正确结论的序号填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分15分)已知椭圆过点,离心率为.

)求椭圆的标准方程;

)设分别为椭圆的左、右焦点,过的直线与椭圆交于不同两点,记的内切圆的面积为,求当取最大值时直线的方程,并求出最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,四边形是直角梯形, 底面 的中点, 点在上,且.

(1)证明: 平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)当为常数,且在区间变化时,求的最小值

2)证明:对任意的,总存在,使得

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,底面是边长为2的等边三角形, 的中点.

(1)求证: 平面

(2)若四边形是正方形,且,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在对人们休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人,女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.

(Ⅰ)根据以上数据建立一个2×2列联表;

(Ⅱ)能否在犯错误的概率不超过0.05的前提下认为性别与休闲方式有关系?

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:在数列中,若为常数)则称为“等方差数列”,下列是对“等方差数列”的有关判断( )

①若是“等方差数列”,在数列 是等差数列;

是“等方差数列”;

③若是“等方差数列”,则数列为常)也是“等方差数列”;

④若既是“等方差数列”又是等差数列,则该数列是常数数列.

其中正确命题的个数为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案