【题目】已知存在常数,那么函数在上是减函数,在上是增函数,再由函数的奇偶性可知在上是增函数,在上是减函数.
(1)判断函数的单调性,并证明:
(2)将前述的函数和推广为更为一般形式的函数,使和都是的特例,研究的单调性(只须归纳出结论,不必推理证明)
【答案】见解析;见解析.
【解析】
采用换元的思想:令则;再借助复合函数单调性的判断规则和奇偶函数在对称区间上的单调性特点,即可得证.
由结论和题中的性质进行归纳总结,即可得出一般性结论.
判断如下:
在上为减函数,
在上为增函数;
再由函数的奇偶性可知,
在上为减函数,
在上为增函数.
证明:令,
则,
由题可得,
在上为减函数,
在上是增函数;
在上为增函数,
在上为减函数;
由复合函数单调性判断规则知:
在上为减函数,
在上为增函数;
由题知,
为偶函数,
偶函数在对称区间上单调性相反,
在上为减函数,
在上为增函数;
一般性结论:
函数在上为减函数,
在上为增函数;
再由函数的奇偶性可知,
当n为奇数时,
在上为增函数,
在上为减函数;
当n为偶数时,
在上为减函数,
在上为增函数;
科目:高中数学 来源: 题型:
【题目】把三盆不同的兰花和4盆不同的玫瑰花摆放在右图图案中的1,2,3,4,5,6,7所示的位置上,其中三盆兰花不能放在一条直线上,则不同的摆放方法为( )
A.2680种
B.4320种
C.4920种
D.5140种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义函数F(a,b)= (a+b﹣|a﹣b|)(a,b∈R),设函数f(x)=﹣x2+2x+4,g(x)=x+2(x∈R)函数F(f(x),g(x))的最大值与零点之和为( )
A.4
B.6
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱台ABO﹣A1B1O1中,侧面AOO1A1与侧面OBB1O1是全等的直角梯形,且OO1⊥OB,OO1⊥OA,平面AOO1A1⊥平面OBB1O1 , OB=3,O1B1=1,OO1= .
(1)证明:AB1⊥BO1;
(2)求直线AO1与平面AOB1所成的角的正切值;
(3)求二面角O﹣AB1﹣O1的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱台ABO﹣A1B1O1中,侧面AOO1A1与侧面OBB1O1是全等的直角梯形,且OO1⊥OB,OO1⊥OA,平面AOO1A1⊥平面OBB1O1 , OB=3,O1B1=1,OO1= .
(1)证明:AB1⊥BO1;
(2)求直线AO1与平面AOB1所成的角的正切值;
(3)求二面角O﹣AB1﹣O1的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的左右焦点分别 ,过作垂直于轴的直线交椭圆于两点,满足.
(1)求椭圆的离心率.
(2)是椭圆短轴的两个端点,设点是椭圆上一点(异于椭圆的顶点),直线分别与轴相交于两点,为坐标原点,若,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=,下列结论中错误的是
A. , f()=0
B. 函数y=f(x)的图像是中心对称图形
C. 若是f(x)的极小值点,则f(x)在区间(-∞,)单调递减
D. 若是f(x)的极值点,则()=0
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com