精英家教网 > 高中数学 > 题目详情

【题目】已知存在常数,那么函数上是减函数,在上是增函数,再由函数的奇偶性可知在上是增函数,在上是减函数.

(1)判断函数的单调性,并证明:

(2)将前述的函数推广为更为一般形式的函数,使都是的特例,研究的单调性(只须归纳出结论,不必推理证明)

【答案】见解析;见解析.

【解析】

采用换元的思想:令;再借助复合函数单调性的判断规则和奇偶函数在对称区间上的单调性特点,即可得证.

结论和题中的性质进行归纳总结,即可得出一般性结论.

判断如下:

上为减函数,

上为增函数;

再由函数的奇偶性可知,

上为减函数,

上为增函数.

证明:,

,

由题可得,

上为减函数,

上是增函数;

上为增函数,

上为减函数;

由复合函数单调性判断规则知:

上为减函数,

上为增函数;

由题知,

为偶函数,

偶函数在对称区间上单调性相反,

上为减函数,

上为增函数;

一般性结论:

函数上为减函数,

上为增函数;

再由函数的奇偶性可知,

n为奇数时,

上为增函数,

上为减函数;

n为偶数时,

上为减函数,

上为增函数;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】把三盆不同的兰花和4盆不同的玫瑰花摆放在右图图案中的1,2,3,4,5,6,7所示的位置上,其中三盆兰花不能放在一条直线上,则不同的摆放方法为(

A.2680种
B.4320种
C.4920种
D.5140种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c,使等式N+都成立,

(1)猜测a,b,c的值;(2)用数学归纳法证明你的结论。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义函数F(a,b)= (a+b﹣|a﹣b|)(a,b∈R),设函数f(x)=﹣x2+2x+4,g(x)=x+2(x∈R)函数F(f(x),g(x))的最大值与零点之和为(
A.4
B.6
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台ABO﹣A1B1O1中,侧面AOO1A1与侧面OBB1O1是全等的直角梯形,且OO1⊥OB,OO1⊥OA,平面AOO1A1⊥平面OBB1O1 , OB=3,O1B1=1,OO1=

(1)证明:AB1⊥BO1
(2)求直线AO1与平面AOB1所成的角的正切值;
(3)求二面角O﹣AB1﹣O1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的展开式中,第二、三、四项的二项式系数成等差数列

1的值;

2此展开式中是否有常数项,为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台ABO﹣A1B1O1中,侧面AOO1A1与侧面OBB1O1是全等的直角梯形,且OO1⊥OB,OO1⊥OA,平面AOO1A1⊥平面OBB1O1 , OB=3,O1B1=1,OO1=

(1)证明:AB1⊥BO1
(2)求直线AO1与平面AOB1所成的角的正切值;
(3)求二面角O﹣AB1﹣O1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆: 的左右焦点分别 ,过作垂直于轴的直线交椭圆于两点,满足.

(1)求椭圆的离心率.

(2)是椭圆短轴的两个端点,设点是椭圆上一点(异于椭圆的顶点),直线分别与轴相交于两点,为坐标原点,若,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=,下列结论中错误的是

A. , f()=0

B. 函数y=f(x)的图像是中心对称图形

C. f(x)的极小值点,则f(x)在区间(-∞,)单调递减

D. fx)的极值点,则()=0

查看答案和解析>>

同步练习册答案