精英家教网 > 高中数学 > 题目详情
18.等差数列{an}的前n项和Sn,若a3+a7-a10=8,a11-a4=4,则S13等于156.

分析 已知两式相加结合等差数列的性质可得a7=12,再由求和公式和性质可得S13=13a7,代值计算可得.

解答 解:∵等差数列{an}中a3+a7-a10=8,a11-a4=4,
∴两式相加可得(a3+a11)+a7-(a4+a10)=12,
由等差数列的性质可得a3+a11=a4+a10=2a7
代入上式可得a7=12,
∴S13=$\frac{13({a}_{1}+{a}_{13})}{2}$=$\frac{13×2{a}_{7}}{2}$=13a7=156
故答案为:156

点评 本题考查等差数列的求和公式和等差数列的性质,求出a7是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.设A={x||2x-3|<5},B={x||x-$\frac{3}{2}$|$≥\frac{5}{2}$},求A∩B,A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.不等式(x+3)2<1的解集是(  )
A.{x|x>-2}B.{x|x<-4}C.{x|-4<x<-2}D.{x|-4≤x≤-2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设集合A={x|x2-2x≤0,x∈R},B={x|x≥a},若A∪B=B,则实数a的取值范围是(  )
A.(-∞,0)B.(-∞,0]C.(0,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2sin($\frac{π}{4}$x+φ)(|φ|<$\frac{π}{2}$)的部分图象图象与x轴的交点分别为点P,Q(如图所示),图象上的点R的坐标为(4,$\sqrt{2}$).
(1)求函数f(x)的解析式,并求函数f(x)的值域;
(2)求向量$\overrightarrow{PR}$与$\overrightarrow{PQ}$的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知$\overrightarrow{OA}=(1,0),\overrightarrow{OC}=(-1,\sqrt{3})$,$\overrightarrow{CB}$=(cosα,sinα),则$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角的取值范围为(  )
A.$[\frac{π}{2},\frac{5π}{6}]$B.$[\frac{π}{2},\frac{2π}{3}]$C.$[\frac{2π}{3},\frac{5π}{6}]$D.$[\frac{π}{6},\frac{2π}{3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设全集U=R,集合A={x|x2-3x-4≥0},B={x|x-5<0},则A∩B=[4,5);A∪B=R;∁UA=(-1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设函数f(x)=sin(ωx+φ)(ω,φ是常数,ω>0,0<φ<π),若f(x)在区间[$\frac{π}{6}$,$\frac{π}{3}$]上具有单调性,且f($\frac{π}{6}$)=-f($\frac{π}{3}$)=-f($\frac{π}{2}$).则f(x)的解析式为f(x)=sin(3x+$\frac{π}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)集合A={x|ax2-2x+1=0}只有-个元素,求实数a的值及A;
(2)集合A={x|ax2-2x-1≥0}=∅,求实数a的取值范围.

查看答案和解析>>

同步练习册答案