精英家教网 > 高中数学 > 题目详情

【题目】将一张边长为12cm的正方形纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)所示放置.如果正四棱锥的主视图是等边三角形,如图(3)所示,则正四棱锥的体积是(
A. cm3
B. cm3
C. cm3
D. cm3

【答案】B
【解析】解:由题意可得:设裁去四个全等的等腰三角形的底边边长为x,则图(2)中的底面正方形的边长= ,又图(3)中的等边三角形的边长= =

(12﹣x)=

解得x=4.

∴正四棱锥的体积= × =

故选:B.

【考点精析】本题主要考查了由三视图求面积、体积的相关知识点,需要掌握求体积的关键是求出底面积和高;求全面积的关键是求出各个侧面的面积才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个内角A、B、C所对的边长分别是a、b、c,且 ,若将函数f(x)=2sin(2x+B)的图象向右平移 个单位长度,得到函数g(x)的图象,则g(x)的解析式为( )
A.
B.
C.2sin2x
D.2cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将集合M={1,2,3,…15}表示为它的5个三元子集(三元集:含三个元素的集合)的并集,并且这些三元子集的元素之和都相等,则每个三元集的元素之和为;请写出满足上述条件的集合M的5个三元子集 . (只写出一组)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为研究学生语言学科的学习情况,现对高二200名学生英语和语文某次考试成绩进行抽样分析.将200名学生编号为001,002,…,200,采用系统抽样的方法等距抽取10名学生,将10名学生的两科成绩(单位:分)绘成折线图如下:
(Ⅰ)若第一段抽取的学生编号是006,写出第五段抽取的学生编号;
(Ⅱ)在这两科成绩差超过20分的学生中随机抽取2人进行访谈,求2人成绩均是语文成绩高于英语成绩的概率;
(Ⅲ)根据折线图,比较该校高二年级学生的语文和英语两科成绩,写出你的结论和理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣1+aex
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)求f(x)的极值;
(3)当a=1时,曲线y=f(x)与直线y=kx﹣1没有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正△ABC三个顶点都在半径为2的球面上,球心O到平面ABC的距离为1,点E是线段AB的中点,过点E作球O的截面,则截面面积的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义一个集合A的所有子集组成的集合叫做集合A的幂集,记为P(A),用n(A)表示有限集A的元素个数,给出下列命题:①对于任意集合A,都有AP(A);②存在集合A,使得n[P(A)]=3;③用表示空集,若A∩B=,则P(A)∩P(B)=;④若A B,,则P(A) P(B);⑤若n(A)-n(B)=1,则n[P(A)]=2×n[P(B)]其中正确的命题个数为( )。
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC是等边三角形,边长为4,BC边的中点为D,椭圆W以A,D为左、右两焦点,且经过B、C两点.
(1)求该椭圆的标准方程;
(2)过点D且x轴不垂直的直线l交椭圆于M,N两点,求证:直线BM与CN的交点在一条定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数y=f(x),恒有f(x)=f(2﹣x)成立,且f′(x)(x﹣1)>0,对任意的x1<x2 , 则f(x1)<f(x2)成立的充要条件是( )
A.x2>x1≥1
B.x1+x2>2
C.x1+x2≤2
D.x2

查看答案和解析>>

同步练习册答案