【题目】“微信运动”是一个类似计步数据库的公众帐号,用户只需以运动手环或手机协处理器的运动教据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现,现随机选取朋友圈中的50人记录了他们某一天的走路步数,并将数据整理如下:
规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.
(1)填写下面列联表(单位:人),并根据列联表判断是否有的把握认为“评定类型与性别有关”;
附:
(2)为了进一步了解“懈怠性”人群中每个人的生活习惯,从步行在的人群中再随机抽取3人,求选中的人中男性人数超过女性人数的概率.
科目:高中数学 来源: 题型:
【题目】黑板上写有,1,2,…,666,这666个正整数,第一步划去最前面的八个数:1,2,…,8,,并在666后面写上1,2,…,8的和36;第二步再划去最前面的八个数:9,10,…,16,并在最后面写上9,10,…,16的和100;如此继续下去(即每一步划去最前面的八个数,并在最后写上划去的八个数的和).
(1)问:经过多少步后,黑板上只剩下一个数?
(2)当黑板上只剩下一个数时,求出在黑板上出现过的所有数的和(如果一个数多次出现需重复计算).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m,高为4 m.养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).
(1)分别计算按这两种方案所建的仓库的体积;
(2)分别计算按这两种方案所建的仓库的表面积(不含底面积);
(3)哪个方案更经济些?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题
已知P为椭圆上任意一点,,是椭圆的两个焦点,则的范围是;
已知M是双曲线上任意一点,是双曲线的右焦点,则;
已知直线l过抛物线C:的焦点F,且l与C交于,两点,则;
椭圆具有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点,是它的焦点,长轴长为2a,焦距为2c,若静放在点的小球小球的半径忽略不计从点沿直线出发则经椭圆壁反射后第一次回到点时,小球经过的路程恰好是4a.
其中正确命题的序号为______请将所有正确命题的序号都填上
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年10月18日至10月24日,中国共产党第十九次全国代表大会简称党的“十九大”在北京召开一段时间后,某单位就“十九大”精神的领会程度随机抽取100名员工进行问卷调查,调查问卷共有20个问题,每个问题5分,调查结束后,发现这100名员工的成绩都在内,按成绩分成5组:第1组,第2组,第3组,第4组,第5组,绘制成如图所示的频率分布直方图,已知甲、乙、丙分别在第3,4,5组,现在用分层抽样的方法在第3,4,5组共选取6人对“十九大”精神作深入学习.
求这100人的平均得分同一组数据用该区间的中点值作代表;
求第3,4,5组分别选取的作深入学习的人数;
若甲、乙、丙都被选取对“十九大”精神作深入学习,之后要从这6人随机选取2人再全面考查他们对“十九大”精神的领会程度,求甲、乙、丙这3人至多有一人被选取的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的离心率,左顶点到直线的距离,为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆相交于两点,若以为直径的圆经过坐标原点,证明:点到直线的距离为定值;
(III)在(Ⅱ)的条件下,试求的面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com