17£®¡°ÇÀºì°ü¡±µÄÍøÂçÓÎÏ·ÓжàÖÖÍæ·¨£¬Ð¡Ã÷ÔÚÊ®°ËËêÉúÈÕ¾ÙÐгÉÈËÀñʱ²Î¼ÓÒ»ÖÖ½ÓÁúºì°üÓÎÏ·£»Ð¡Ã÷ÔÚºì°üÀï×°ÁË9ÔªÏÖ½ð£¬È»ºó·¢¸øºÃÓѼף¬²¢¸ø³ö½ð¶îËùÔÚÇø¼ä[1£¬9]£¬Èüײ£¨Ëù²Â½ð¶îΪÕûÊýÔª£»ÏÂͬ£©£¬Èç¹û¼×²ÂÖУ¬¼×½«»ñµÃºì°üÀïµÄ½ð¶î£»Èç¹û¼×δ²ÂÖУ¬¼×ºÍµ±Ç°µÄºì°üת¸øºÃÓÑÒÒ£¬Í¬Ê±¸ø³ö½ð¶îËùÔÚÇø¼ä[6£¬9]£¬ÈÃÒҲ£¬Èç¹ûÒÒ²Âͬ£¬¼×ºÍÒÒ¿ÉÒÔƽ·Öºì°üÀïµÄ½ð¶î£»Èç¹ûÒÒδ²ÂÖУ¬ÒÒÒª½«µ±Ç°µÄºì°üת·¢¸øºÃÓѱû£¬Í¬Ê±¸ø³ö½ð¶îËùÔÚÇø¼ä[8£¬9]£¬Èñû²Â£¬Èç¹û±û²ÂÖУ¬¼×¡¢ÒҺͱû¿ÉÒÔƽ·Öºì°üÀïµÄ½ð¶î£¬Èç¹û±ûδ²ÂÖУ¬ºì°üÀïµÄ×ʽð½«ÍË»ØСÃ÷µÄÕÊ»§£®
£¨1£©Çó±ûµÃµ½µÄ0ÔªµÄ¸ÅÂÊ£»
£¨2£©´Ó¸ÅÂÊͳ¼ÆµÄ½Ç¶È¶øÑÔ£¬¼×Ëù»ñµÃµÄ½ð¶îÊÇ·ñ³¬¹ýÒҺͱûÁ½ÈËËù»ñµÃµÄ½ð¶îÖ®ºÍ£¿ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÌâÒ⣬·ÖÈýÖÖÇé¿öÇó±ûµÃµ½0ÔªµÄ¸ÅÂÊ£»
£¨2£©·Ö±ðÇó³ö¼×ÒÒ±û¶ÔÓ¦µÄ·Ö²¼ÁУ¬Çó³ö»ñµÃ½ð¶îµÄÊýѧÆÚÍû£¬½øÐбȽϼ´¿É£®

½â´ð ½â£º£¨1£©±ûµÃµ½µÄ0ԪΪʼþM£¬ÔòP£¨M£©=$\frac{1}{9}+\frac{8}{9}¡Á\frac{1}{4}+\frac{8}{9}¡Á\frac{3}{4}¡Á\frac{1}{2}=\frac{2}{3}$£»
£¨2£©Éè¼×»ñµÃ½ð¶îΪX£¬Ôò
X=0£¬3£¬4.5£¬9£¬P£¨X=3£©=$\frac{1}{3}$£¬P£¨X=0£©=$\frac{8}{9}¡Á\frac{3}{4}¡Á\frac{1}{2}=\frac{1}{3}$£¬P£¨X=4.5£©=$\frac{8}{9}¡Á\frac{1}{4}=\frac{2}{9}$£¬P£¨X=9£©=$\frac{1}{9}$£¬
XµÄ·Ö²¼ÁÐ

X034.59
P$\frac{1}{3}$$\frac{1}{3}$$\frac{2}{9}$$\frac{1}{9}$
E£¨X£©=0¡Á$\frac{1}{3}$+3¡Á$\frac{1}{3}$+4.5¡Á$\frac{2}{9}$+9¡Á$\frac{1}{9}$=3£»
ÉèÒÒ»ñµÃµÄ½ð¶îΪYÔª£¬ÔòYµÄȡֵΪ0£¬3£¬4.5
P£¨Y=0£©=$\frac{1}{9}$+$\frac{8}{9}¡Á\frac{3}{4}¡Á\frac{1}{2}$=$\frac{4}{9}$£¬P£¨Y=3£©=$\frac{8}{9}$¡Á$\frac{3}{4}¡Á\frac{1}{2}$=$\frac{1}{3}$£¬
P£¨Y=4.5£©=$\frac{8}{9}$¡Á$\frac{1}{4}$=$\frac{2}{9}$£»
YµÄ·Ö²¼ÁÐ
 Y 0 3 4.5
 P $\frac{4}{9}$ $\frac{1}{3}$ $\frac{2}{9}$
E£¨Y£©=0¡Á$\frac{4}{9}$+3¡Á$\frac{1}{3}$+4.5¡Á$\frac{2}{9}$=2£»
Éè±û»ñµÃµÄ½ð¶îΪZÔª£¬ÔòZµÄȡֵΪ0£¬3£®
P£¨Z=0£©=$\frac{1}{9}$+$\frac{8}{9}¡Á\frac{1}{4}$+$\frac{8}{9}¡Á\frac{3}{4}¡Á\frac{1}{2}$=$\frac{2}{3}$£¬P£¨Z=3£©=$\frac{8}{9}$¡Á$\frac{3}{4}¡Á\frac{1}{2}$=$\frac{1}{3}$£¬
ZµÄ·Ö²¼ÁÐ
 Z 0 3
 P $\frac{2}{3}$ $\frac{1}{3}$
E£¨Z£©=0¡Á$\frac{2}{3}$+3¡Á$\frac{1}{3}$=1£¬
¡àE£¨X£©=E£¨Y£©+E£¨Z£©£¬
¡à´Óͳ¼ÆѧµÄ½Ç¶È¶øÑÔ£¬AËù»ñµÃµÄ½ð¶î²»³¬¹ýBºÍCÁ½ÈËËù»ñµÃµÄ½ð¶îÖ®ºÍ£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é¸ÅÂÊ֪ʶµÄÔËÓ㬿¼²é·Ö²¼ÁÐÓëÆÚÍû£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÅжÏÏÂÁжÔÓ¦¹ØϵÊÇ·ñΪº¯Êý£¬Èô²»ÊÇ£¬ËµÃ÷ÀíÓÉ£º
£¨1£©x¡ú$\frac{2}{x}$£¬x¡ÊR£»
£¨2£©x¡úy£¬y2=x£¬x¡ÊN£¬y¡ÊR£»
£¨3£©y=$\sqrt{x-2}$+$\sqrt{1-x}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2017½ì¹ã¶«»ªÄÏʦ´ó¸½ÖиßÈý×ۺϲâÊÔÒ»Êýѧ£¨Àí£©ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÌî¿ÕÌâ

º¯ÊýµÄ¶¨ÒåÓòΪ____________£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªµãPÔÚÇúÏßy=x3-3x2+2x+1ÉÏÒƶ¯£¬ÈôÇúÏßÔÚµãP´¦µÄÇÐÏßµÄÇãб½ÇΪ¦Á£¬Ôò¦ÁµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[0£¬$\frac{¦Ð}{2}$]¡È[$\frac{3¦Ð}{4}$£¬¦Ð£©B£®[0£¬$\frac{¦Ð}{2}$£©¡È£¨$\frac{¦Ð}{2}$£¬$\frac{3¦Ð}{4}$£©C£®[$\frac{¦Ð}{4}$£¬$\frac{¦Ð}{2}$]D£®[$\frac{3¦Ð}{4}$£¬¦Ð£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=$\sqrt{3}$sinx•cosx-m•cos2xµÄ×î´óֵΪ$\frac{3}{2}$£®
£¨1£©ÇóʵÊýmµÄÖµºÍº¯Êýf£¨x£©µÄ×îСÕýÖÜÆÚ£»
£¨2£©Èñ½Ç¡÷ABCµÄÄڽǡÏA¡¢¡ÏB¡¢¡ÏCËù¶ÔµÄ±ß·Ö±ðΪa¡¢b¡¢cÂú×ãf£¨A£©=$\frac{\sqrt{3}+1}{2}$£¬ÇÒ¡ÏB=$\frac{¦Ð}{3}$£¬b=$\sqrt{6}$£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®É躯Êýf£¨x£©=ln£¨1+x£©£¬g£¨x£©=xf¡ä£¨x£©£¨x¡Ý0£©£¬ÆäÖÐf¡ä£¨x£©ÊÇf£¨x£©µÄµ¼º¯Êý£®
£¨1£©Èôa¡Ü1£¬ÇóÖ¤£ºf£¨x£©¡Ýag£¨x£©£®
£¨2£©Èôg1£¨x£©=g£¨x£©£¬gn+1£¨x£©=g£¨gn£¨x£©£©£¬n¡ÊN+£¬Çóg1£¨x£©£¬g2£¨x£©£¬g3£¨x£©½âÎöʽ£¬²ÂÏëgn£¨x£©µÄ½âÎöʽ£¬²¢ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªÖÐÐÄÔÚÔ­µãµÄË«ÇúÏßCµÄÓÒ½¹µãΪF£¨4£¬0£©£¬ÀëÐÄÂʵÈÓÚ$\frac{4}{3}$£¬ÔòCµÄ·½³ÌÊÇ£¨¡¡¡¡£©
A£®$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{5}$=1B£®$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{7}$=1C£®$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1D£®$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{25}$=1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Å×ÎïÏßx2=2pyµÄ½¹µãFµ½×¼ÏߵľàÀëΪ2£¬»¥Ïà´¹Ö±µÄÖ±Ïßl1£¬l2¶¼¹ý½¹µãF£®Èôl1ÓëÅ×ÎïÏß½»ÓÚA£¬BÁ½µã£¬l2ÓëÅ×ÎïÏß½»ÓÚC£¬DÁ½µãÇÒl1µÄбÂÊ´óÓÚ0£¬A£¬CÔÚµÚÒ»ÏóÏÞ£®
£¨1£©ÇóÅ×ÎïÏß·½³Ì£»
£¨2£©ÇóÖ¤£ºÖ±ÏßAC£¬BDµÄ½»µãÔÚ×¼ÏßÉÏ£»
£¨3£©ÇóÖ±ÏßAC£¬BDµÄ½»µãºá×ø±ê·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÔÚ¡÷ABCÖУ¬a£¬b£¬c·Ö±ðÊǽÇA£¬B£¬CµÄ¶Ô±ß£¬Èôa£¬b£¬c³ÉµÈ±ÈÊýÁУ¬A=60¡ã£¬Ôò$\frac{bsinB}{c}$=£¨¡¡¡¡£©
A£®$\frac{3}{4}$B£®$\frac{{\sqrt{3}}}{2}$C£®$\frac{{\sqrt{2}}}{2}$D£®$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸