精英家教网 > 高中数学 > 题目详情
已知定义在(-1,1)上的f(x)满足:对?x,y∈(-1,1),均有f(x)+f(y)=f(
x+y
1+xy
)
,且x>0时,f(x)>0,则函数y=f(x)在定义域上的奇偶性与增减性为(  )
分析:要判定函数f(x)在(-1,1)上的奇偶性,只需判定f(-x)与f(x)的关系,先令x=y=0求出f(0),然后令y=-x即可判定,最后根据函数单调性的定义进行判定单调性.
解答:解:∵f(0)+f(0)=f(0)⇒f(0)=0
∴令y=-x,f(-x)+f(x)=f(0)=0⇒f(-x)=-f(x)
∴f(x)在(-1,1)上是奇函数.
当-1<x<y<1时,
∵f(x)-f(y)=f(x)+f(-y)=f(
x-y
1-xy
),且
x-y
1-xy
<0,
∵x>0时,f(x)>0,因为f(x)为奇函数,若x<0,可得-x>0,f(-x)>0,-f(x)>0,可得f(x)<0,

∴f(x)-f(y)=f(
x-y
1-xy
)<0,可得f(x)<f(y),
∴f(x)为增函数,
∴f(x)为奇函数且为增函数,
故选A;
点评:本题主要考查抽象函数的奇偶性与单调性性,属于中档题,函数的奇偶性是函数在定义域上的“整体”性质,单调性是函数的“局部”性质.
练习册系列答案
相关习题

科目:高中数学 来源:蚌埠二中2008届高三12月份月考数学试题(理) 题型:044

已知定义在实数集合R上的奇函数f(x)有最小正周期为2,且当x∈(0,1)时,

(1)求函f(x)在[-1,1]上的解析式;

(2)判断f(x)在(0,1)上的单调性;

(3)当λ取何值时,方程f(x)=λ在[-1,1]上有实数解?

查看答案和解析>>

科目:高中数学 来源:山东省济南市2012届高三上学期12月月考数学试题 题型:044

已知定义在实数集R上的奇函数f(x)有最小正周期2,且当x∈(0,1)时,f(x)=

(Ⅰ)求函数f(x)在(-1,1)上的解析式;

(Ⅱ)判断f(x)在(0,1)上的单调性;

(Ⅲ)当λ取何值时,方程f(x)=λ在(-1,1)上有实数解?

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省五校协作体高二(上)联合竞赛数学试卷(文科)(解析版) 题型:解答题

已知定义在区间[-1,1]上的函数为奇函数..
(1)求实数b的值.
(2)判断函数f(x)在区间(-1,1)上的单调性,并证明你的结论.
(3)f(x)在x∈[m,n]上的值域为[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省赣州市会昌中学高三(上)第二次月考数学试卷(理科)(解析版) 题型:解答题

已知定义在区间[-1,1]上的函数为奇函数..
(1)求实数b的值.
(2)判断函数f(x)在区间(-1,1)上的单调性,并证明你的结论.
(3)f(x)在x∈[m,n]上的值域为[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省吉安市白鹭洲中学高三(上)第一次月考数学试卷(文科)(解析版) 题型:解答题

已知定义在区间[-1,1]上的函数为奇函数..
(1)求实数b的值.
(2)判断函数f(x)在区间(-1,1)上的单调性,并证明你的结论.
(3)f(x)在x∈[m,n]上的值域为[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

同步练习册答案