精英家教网 > 高中数学 > 题目详情
已知椭圆具有性质:若是椭圆为常数上关于原点对称的两点,点是椭圆上的任意一点,若直线的斜率都存在,并分别记为,那么之积是与点位置无关的定值
试对双曲线为常数写出类似的性质,并加以证明.
双曲线类似的性质为:若是双曲线为常数上关于原点对称的两点,点是双曲线上的任意一点,若直线的斜率都存在,并分别记为,那么之积是与点位置无关的定值

试题分析:双曲线类似的性质为:若是双曲线为常数上关于原点对称的两点,点是双曲线上的任意一点,若直线的斜率都存在,并分别记为,那么之积是与点位置无关的定值
证明:设,则
①,②,
两式相减得:
所以是与点位置无关的定值.
点评:中档题,曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题主要运用双曲线的几何性质。(2)作为研究直线的斜率乘积是否为定值问题,应用韦达定理,通过“整体代换”,简化了探究过程。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知椭圆的焦点为P是椭圆上一动点,如果延长F1PQ,使,那么动点Q的轨迹是(      )
A.椭圆B.双曲线C.抛物线D.圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,椭圆左右焦点分别为,上顶点为为等边三角形.定义椭圆C上的点的“伴随点”为.
(1)求椭圆C的方程;
(2)求的最大值;
(3)直线l交椭圆CAB两点,若点AB的“伴随点”分别是PQ,且以PQ为直径的圆经过坐标原点O.椭圆C的右顶点为D,试探究ΔOAB的面积与ΔODE的面积的大小关系,并证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的渐近线方程为,左焦点为F,过的直线为,原点到直线的距离是
(1)求双曲线的方程;
(2)已知直线交双曲线于不同的两点CD,问是否存在实数,使得以CD为直径的圆经过双曲线的左焦点F。若存在,求出m的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆(a>b>0)的离心率为,以原点为圆心,椭圆短半轴长半径的圆与直线y=x+ 相切.
(1)求椭圆的方程;
(2)设直线与椭圆在轴上方的一个交点为是椭圆的右焦点,试探究以
直径的圆与以椭圆长轴为直径的圆的位置关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的左右焦点分别为,由4个点组成一个高为,面积为的等腰梯形.
(1)求椭圆的方程;
(2)过点的直线和椭圆交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线和椭圆有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设点是双曲线与圆在第一象限的交点,其中分别是双曲线的左、右焦点,若,则双曲线的离心率为______________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点是双曲线的左焦点,点是该双曲线的右顶点,过且垂直于轴的直线与双曲线交于两点,若是锐角三角形,则该双曲线的离心率的取值范围是(   ).
A.B.C.D.

查看答案和解析>>

同步练习册答案