精英家教网 > 高中数学 > 题目详情

【题目】微信红包是一款年轻人非常喜欢的手机应用.某网络运营商对甲、乙两个品牌各种型号的手机在相同环境下抢到红包的个数进行统计,得到如下数据:

品牌 型号

甲品牌(个)

4

3

8

6

12

乙品牌(个)

5

7

9

4

3

红包个数

手机品牌

优良

一般

合计

甲品牌(个)

乙品牌(个)

合计

(Ⅰ)如果抢到红包个数超过个的手机型号为“优良”,否则为“一般”,请完成上述表格,并据此判断是否有的把握认为抢到红包的个数与手机品牌有关?

(Ⅱ)不考虑其它因素,现要从甲、乙两品牌的种型号中各选出种型号的手机进行促销活动,求恰有一种型号是“优良”,另一种型号是“一般”的概率;

参考公式:随机变量的观察值计算公式:

其中.临界值表:

0.10

0.050

0.010

0.001

2.706

3.841

6.635

10.828

【答案】(1)表格见解析;没有90%的把握认为抢到红包的个数与手机品牌有关.

(2) .

【解析】分析:(I)根据表中数据做出列表,代入求临界值的公式,求出观测值,利用观测值同临界值表进行判断

(Ⅱ)记“所选的两种型号中,一种型号是“优良”,另一种型号是“一般”为事件A“两种型号中,各选一种”共有5×5=25种方法,两种型号中,一种型号是“优良”,另一种型号是“一般”分为两种情况,分别算出有多少种,即可求出概率.

详解:(I)

所以,没有90%的把握认为抢到红包的个数与手机品牌有关.

(Ⅱ)记“所选的两种型号中,一种型号是“优良”,另一种型号是“一般”为事件A

(Ⅰ)中的表格数据可得,

“两种型号中,各选一种”共有5×5=25种方法,

甲型号“优良”,乙型号“一般”共有3×3=9种方法,

甲型号“一般”,乙型号“优良”共有2×2=4种方法.

所以,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x+m|.
(Ⅰ) 解关于m的不等式f(1)+f(﹣2)≥5;
(Ⅱ)当x≠0时,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市地铁全线共有四个车站,甲、乙两人同时在地铁第1号车站(首发站)乘车,假设每人自第2号站开始,在每个车站下车是等可能的,约定用有序实数对表示甲在号车站下车,乙在号车站下车

)用有序实数对把甲、乙两人下车的所有可能的结果列举出来;

)求甲、乙两人同在第3号车站下车的概率;

)求甲、乙两人在不同的车站下车的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校200名学生的数学期中考试成绩频率分布直方图如图所示,其中成绩分组区间是.

1)求图中m的值;

2)根据频率分布直方图,估计这200名学生的平均分(同一组中的数据用该组区间的中间值作代表)和中位数(四舍五入取整数);

3)若这200名学生的数学成绩中,某些分数段的人数x与英语成绩相应分数段的人数y之比如下表所示,求英语成绩在的人数.

分数段

[7080

[8090

[90100

[100110

[110120

xy

1:2

2:1

6:5

1:2

1:1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂对一批新产品的长度(单位:)进行检测,如下图是检测结果的频率分布直方图,据此估计这批产品的中位数与平均数分别为( )

A.20,22.5B.22.5,25C.22.5,22.75D.22.75,22.75

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数φ(x)= ,a>0
(1)若函数f(x)=lnx+φ(x),在(1,2)上只有一个极值点,求a的取值范围;
(2)若g(x)=|lnx|+φ(x),且对任意x1 , x2∈(0,2],且x1≠x2 , 都有 <﹣1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,且过点.

(Ⅰ)求椭圆的方程;

(Ⅱ)设为椭圆上一点,过点轴的垂线,垂足为.取点,连接,过点的垂线交轴于点.点是点关于轴的对称点,作直线,问这样作出的直线是否与椭圆一定有唯一的公共点?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信是现代生活进行信息交流的重要工具,据统计,某公司名员工中的人使用微信其中每天使用微信时间在一小时以内的有,其余的员工每天使用微信的时间在一小时以上,若将员工分成青年(年龄小于岁)和中年(年龄不小于岁)两个阶段,那么使用微信的人中是青年人.若规定:每天使用微信时间在一小时以上为经常使用微信,那么经常使用微信的员工中是青年人.

(1)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出列联表

青年人

中年人

总计

经常使用微信

不经常使用微信

总计

(2)由列联表中所得数据判断,是否有百分之的把握认为“经常使用微信与年龄有关”?

0.010

0.001

6.635

10.828

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,∠A=60°,AB=3,AC=2.若 =2 (λ∈R),且 =﹣4,则λ的值为

查看答案和解析>>

同步练习册答案