精英家教网 > 高中数学 > 题目详情
(2013•肇庆二模)已知函数f(x)=
-x3+ax2+bx,(x<1)
c(ex-1-1),(x≥1)
x=0,x=
2
3
处存在极值.
(1)求实数a,b的值;
(2)函数y=f(x)的图象上存在两点A,B使得△AOB是以坐标原点O为直角顶点的直角三角形,且斜边AB的中点在y轴上,求实数c的取值范围;
(3)当c=e时,讨论关于x的方程f(x)=kx(k∈R)的实根的个数.
分析:(1)当x<1时,f′(x)=-3x2+2ax+b,依题意,由
f′(0)=0
f′(
2
3
)=0
可求实数a,b的值;
(2)由(1)可求得f(x)=
-x3+x2,(x<1)
c(ex-1-1),(x≥1)
,依题意A,B的横坐标互为相反数,不妨设A(-t,t3+t2),B(t,f(t)),(t>0).分t<1与t≥1讨论,利用∠AOB是直角,
OA
OB
=0,即可求得实数c的取值范围;
(3)由方程f(x)=kx,知kx=
-x3+x2,(x<1)
ex-e,(x≥1)
,可知0一定是方程的根,x≠0,方程等价于k=
-x2+x,(x<1且x≠0)
ex-e
x
,(x≥1)
,构造函数g(x)=
-x2+x,(x<1且x≠0)
ex-e
x
,(x≥1)

分x<1且x≠0与x≥1两类讨论,即可确定f(x)=kx(k∈R)的实根的个数.
解答:解(1)当x<1时,f′(x)=-3x2+2ax+b.(1分)
因为函数f(x)在x=0,x=
2
3
处存在极值,所以
f′(0)=0
f′(
2
3
)=0
解得a=1,b=0.(3分)
(2)由(1)得f(x)=
-x3+x2,(x<1)
c(ex-1-1),(x≥1)

根据条件知A,B的横坐标互为相反数,不妨设A(-t,t3+t2),B(t,f(t)),(t>0).
若t<1,则f(t)=-t3+t2
由∠AOB是直角得,
OA
OB
=0,即-t2+(t3+t2)(-t3+t2)=0,
即t4-t2+1=0.此时无解;                                                    (5分)
若t≥1,则f(t)=c(et-1-1).由于AB的中点在y轴上,且∠AOB是直角,所以B点不可能在x轴上,即t≠1.
OA
OB
=0,即-t2+(t3+t2)•c(et-1-1)=0,得c=
1
(t+1)(et-1-1)

因为函数y=(t+1)(et-1-1)在t>1上的值域是(0,+∞),
所以实数c的取值范围是(0,+∞).(7分)
(3)由方程f(x)=kx,知kx=
-x3+x2,(x<1)
ex-e,(x≥1)
,可知0一定是方程的根,(8分)
所以仅就x≠0时进行研究:方程等价于k=
-x2+x,(x<1且x≠0)
ex-e
x
,(x≥1)

构造函数g(x)=
-x2+x,(x<1且x≠0)
ex-e
x
,(x≥1)

对于x<1且x≠0部分,函数g(x)=-x2+x的图象是开口向下的抛物线的一部分,
当x=
1
2
时取得最大值
1
4
,其值域是(-∞,0)∪(0,
1
4
);
对于x≥1部分,函数g(x)=
ex-e
x
,由g′(x)=
ex(x-1)+e
x2
>0,知函数g(x)在(1,+∞)上单调递增.
所以,①当k>
1
4
或k≤0时,方程f(x)=kx有两个实根;
②当k=
1
4
时,方程f(x)=kx有三个实根;
③当0<k<
1
4
时,方程f(x)=kx有四个实根.(14分)
点评:本题考查利用导数研究函数的极值,考查根的存在性及根的个数判断,突出分类讨论思想、等价转化思想及创新思维与逻辑思维能力的考查,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•肇庆二模)(坐标系与参数方程选做题)
若以直角坐标系的x轴的非负半轴为极轴,曲线l1的极坐标系方程为ρsin(θ-
π
4
)=
2
2
(ρ>0,0≤θ≤2π),直线l2的参数方程为
x=1-2t
y=2t+2
(t为参数),则l1与l2的交点A的直角坐标是
(1,2)
(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•肇庆二模)定义全集U的子集M的特征函数为fM(x)=
1,x∈M
0,x∈CUM
,这里?UM表示集合M在全集U中的补集,已M⊆U,N⊆U,给出以下结论:
①若M⊆N,则对于任意x∈U,都有fM(x)≤fN(x);
②对于任意x∈U都有fCUM(x)=1-fM(x)
③对于任意x∈U,都有fM∩N(x)=fM(x)•fN(x);
④对于任意x∈U,都有fM∪N(x)=fM(x)•fN(x).
则结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•肇庆二模)不等式|2x+1|>|5-x|的解集是
(-∞,-6)∪(
4
3
,+∞)
(-∞,-6)∪(
4
3
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•肇庆二模)在等差数列{an}中,a15=33,a25=66,则a35=
99
99

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•肇庆二模)
π
2
0
(3x+sinx)dx=
3
8
π2+1
3
8
π2+1

查看答案和解析>>

同步练习册答案