精英家教网 > 高中数学 > 题目详情

如图,已知四边形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F,G,H分别为BP,BE,PC的中点.
(Ⅰ)求证:FG∥平面PDE;
(Ⅱ)求证:平面FGH⊥平面AEB;
(Ⅲ)在线段PC上是否存在一点M,使PB⊥平面EFM?若存在,求出线段PM的长;若不存在,请说明理由.

(Ⅰ)证明:因为F,G分别为PB,BE的中点,所以FG∥PE.
又因为FG?平面PED,PE?平面PED,所以,FG∥平面PED.…(4分)
(Ⅱ)因为EA⊥平面ABCD,所以EA⊥CB.
又因为CB⊥AB,AB∩AE=A,所以CB⊥平面ABE.
由已知F,H分别为线段PB,PC的中点,所以FH∥BC,则FH⊥平面ABE.
而FH?平面FGH,所以平面FGH⊥平面ABE.…(9分)
(Ⅲ)在线段PC上存在一点M,使PB⊥平面EFM.证明如下:
在直角三角形AEB中,因为AE=1,AB=2,所以
在直角梯形EADP中,因为AE=1,AD=PD=2,所以
所以PE=BE.又因为F为PB的中点,所以EF⊥PB.
要使PB⊥平面EFM,只需使PB⊥FM.
因为PD⊥平面ABCD,所以PD⊥CB,又因为CB⊥CD,PD∩CD=D,
所以CB⊥平面PCD,而PC?平面PCD,所以CB⊥PC.
若PB⊥FM,则△PFM∽△PCB,可得
由已知可求得,所以.…(14分)
分析:(Ⅰ)利用三角形的中位线的性质证明FG∥PE,再根据直线和平面平行的判定定理证得结论.
(Ⅱ)先证明EA⊥CB、CB⊥AB,可得CB⊥平面ABE.再根据FH∥BC,则FH⊥平面ABE.
(Ⅲ)在线段PC上存在一点M,满足条件.先证明PE=BE,根据F为PB的中点,可得EF⊥PB.要使PB⊥平面EFM,只需使PB⊥FM即可.此时,则△PFM∽△PCB,根据对应边成比列
求得PB、PF、PC的值,可得PM的值.
点评:本题主要考查直线和平面平行的判定定理的应用,直线和平面垂直的判定定理、平面和平面垂直的判定定理的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知四边形ABCD为直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,沿AC将△ABC折起,使点B到点P的位置,且平面PAC⊥平面ACD.
(I)证明:DC⊥平面APC;
(II)求棱锥A-PBC的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

(几何证明选讲选做题)如图,已知四边形ABCD内接于⊙O,且AB为⊙O的直径,直线MN切
⊙O于D,∠MDA=45°,则∠DCB=
135°
135°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:已知四边形ABCD是正方形,PD⊥平面ABCD,PD=AD,点E,F分别是线段PB,AD的中点
(1)求证:FE∥平面PCD;
(2)求异面直线DE与AB所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四边形ABCD为直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,沿AC将△ABC折起,使点B到点P的位置,且平面PAC⊥平面ACD.
(I)证明:DC⊥平面APC;
(II)求二面角B-AP-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四边形ABCD是菱形,PA⊥平面ABCD,PA=AB=BD=2,AC与BD交于E点,F是PD的中点.
(1)求证:PB∥平面AFC;
(2)求多面体PABCF的体积.

查看答案和解析>>

同步练习册答案