精英家教网 > 高中数学 > 题目详情
如图所示的正方体中,M、N是棱BC、CD的中点,则异面直线AD1与MN所成的角为(  )度.
A.30B.45C.60D.90

连结BD、B1D1
∵正方体ABCD-A1B1C1D1中,BB1D1D是平行四边形
∴BDB1D1
又∵△BCD中,MN是中位线
∴MNBD,可得MNB1D1
因此,∠AD1B1(或其补角)就是异面直线AD1与MN所成的角
∵正△AB1D1中,∠AD1B1=60°
∴异面直线AD1与MN所成的角为60度
故选:C
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题


(1)求证:平面EFG∥平面CB1D1
(2)求证:平面CAA1C1⊥平面CB1D1  ;
(3)求异面直线FGB1C所成的角

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,△ABC和△DBC所在的两个平面互相垂直,且AB=BC=BD,∠ABC=
DBC=120°,求
(1) AD连线和直线BC所成角的大小;
(2) 二面角ABDC的大小

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)

如图,在正四棱柱ABCD—A1B1C1D1中,AA1=AB,点E、M分别为A1B、C1C的中点,过点A1,B,M三点的平面A1BMN交C1D1于点N.
(Ⅰ)求证:EM∥平面A1B1C1D1
(Ⅱ)求二面角B—A1N—B1的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图在直三棱柱ABC-A1B1C1中∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的余弦值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知P为△ABC所在平面外的一点,PC⊥AB,PC=AB=2,E、F分别为PA和BC的中点
(1)求EF与PC所成的角;
(2)求线段EF的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图:正四面体S-ABC中,如果E,F分别是SC,AB的中点,那么异面直线EF与SA所成的角等于(  )
A.90°B.45°C.60°D.30°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四面体ABCD中,O.E分别为BD.BC的中点,且CA=CB=CD=BD=2,AB=AD=
2

(1)求证:AO⊥平面BCD;
(2)求异面直线AB与CD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知平面的一条斜线和它在平面内的射影的夹角是,且平面内的直线和斜线在平面内的射影的夹角是,则直线所成的角是        (   )
A.B.C.D.

查看答案和解析>>

同步练习册答案