精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x≥0}\\{{x}^{2}-2x,x<0}\end{array}\right.$,若关于x的不等式[f(x)]2+af(x)-b2<0恰有1个整数解,则实数a的最大值是(  )
A.2B.3C.5D.8

分析 画出函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x≥0}\\{{x}^{2}-2x,x<0}\end{array}\right.$的图象,对b,a分类讨论,利用一元二次不等式解法可得解集,再利用数形结合即可得出.

解答 解:函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x≥0}\\{{x}^{2}-2x,x<0}\end{array}\right.$,如图所示,
①当b=0时,[f(x)]2+af(x)-b2<0化为[f(x)]2+af(x)<0,
当a>0时,-a<f(x)<0,
由于关于x的不等式[f(x)]2+af(x)-b2<0恰有1个整数解,
因此其整数解为3,又f(3)=-9+6=-3,
∴-a<-3<0,-a≥f(4)=-8,
则8≥a>3,
a≤0不必考虑.
②当b≠0时,对于[f(x)]2+af(x)-b2<0,
△=a2+4b2>0,
解得:$\frac{-a-\sqrt{{a}^{2}+4{b}^{2}}}{2}$<f(x)<$\frac{-a+\sqrt{{a}^{2}+4{b}^{2}}}{2}$,
只考虑a>0,
则$\frac{-a-\sqrt{{a}^{2}+4{b}^{2}}}{2}$<0<$\frac{-a+\sqrt{{a}^{2}+4{b}^{2}}}{2}$,
由于f(x)=0时,不等式的解集中含有多于一个整数解(例如,0,2),舍去.
综上可得:a的最大值为8.
故选:D.

点评 本题考查了一元二次不等式的解法、二次函数的图象,考查了分类讨论方法、数形结合方法与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知集合S={0,1,2,3,4,5},A是S的一个子集,当x∈A时,若有x-1∉A,且x+1∉A,则称x为A的一个“孤立元素”,那么S中无“孤立元素”的4个元素的子集共有6个,其中的一个是{0,1,2,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知:如图,AB∥CD,M是AB的中点,MC的延长线与AD的延长线交于点E,MD的延长线与BC的延长线交于点F.求证:EF∥AB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=BC=2,∠ABD=∠CBD=60°.
(1)求证:BD⊥平面PAC;
(2)若四棱锥P-ABCD的体积是$4\sqrt{3}$,∠BCD=90°,求点C到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\frac{a•{3}^{x}-2}{{3}^{x}+1}$为奇函数,则函数g(x)=x+$\frac{a}{x}$(x>0)的单调递增区间为(  )
A.(0,$\sqrt{2}$)B.(0,2)C.($\sqrt{2}$,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.△ABC中,内角A,B,C的对边分别为a,b,c,且c=2,b=$\sqrt{2}$a,则△ABC的面积的最大值为(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.8D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(1,-1),则cos<2$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{a}$-$\overrightarrow{b}$>=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若a=$\sqrt{7}$-$\sqrt{3}$,b=$\sqrt{14}$-$\sqrt{10}$,则a与b的大小关系是a>b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求定积分${∫}_{0}^{4}$$\frac{x}{\sqrt{3x+4}}$dx.

查看答案和解析>>

同步练习册答案