【题目】已知函数f(x)=1nx.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求证:当x>0时, ;
(Ⅲ)若x﹣1>a1nx对任意x>1恒成立,求实数a的最大值.
【答案】解:(Ⅰ) ,f'(1)=1,
又f(1)=0,所以切线方程为y=x﹣1;
(Ⅱ)证明:由题意知x>0,令 = .
令 ,解得x=1.
易知当x>1时,g'(x)>0,易知当0<x<1时,g'(x)<0.
即g(x)在(0,1)单调递减,在(1,+∞)单调递增,
所以g(x)min=g(1)=0,g(x)≥g(1)=0
即 ,即x>0时, ;
(Ⅲ)设h(x)=x﹣1﹣a1nx(x≥1),
依题意,对于任意x>1,h(x)>0恒成立.
,a≤1时,h'(x)>0,h(x)在[1,+∞)上单调递增,
当x>1时,h(x)>h(1)=0,满足题意.
a>1时,随x变化,h'(x),h(x)的变化情况如下表:
x | (1,a) | a | (a,+∞) |
h'(x) | ﹣ | 0 | + |
h(x) | ↘ | 极小值 | ↗ |
h(x)在(1,a)上单调递减,所以g(a)<g(1)=0
即当a>1时,总存在g(a)<0,不合题意.
综上所述,实数a的最大值为1
【解析】(Ⅰ)求出导函数 ,求出斜率f'(1)=1,然后求解切线方程.(Ⅱ)化简 = .求出 ,令 ,解得x=1.判断函数的单调性求出极小值,推出结果.(Ⅲ)设h(x)=x﹣1﹣a1nx(x≥1),依题意,对于任意x>1,h(x)>0恒成立. ,a≤1时,a>1时,判断函数的单调性,求解最值推出结论即可.
【考点精析】本题主要考查了利用导数研究函数的单调性的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知函数 .
(Ⅰ)如果f(x)在x=0处取得极值,求k的值;
(Ⅱ)求函数f(x)的单调区间;
(III)当k=0时,过点A(0,t)存在函数曲线f(x)的切线,求t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=2,an+1=2an﹣1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=n(an﹣1),求数列{bn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB= b.
(1)求角A的大小;
(2)若a=2,b+c=4,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4cosθ.
(1)求出圆C的直角坐标方程;
(2)已知圆C与x轴相交于A,B两点,直线l:y=2x关于点M(0,m)(m≠0)对称的直线为l'.若直线l'上存在点P使得∠APB=90°,求实数m的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在△ABC中,CD是∠ACB的平分线,△ACD的外接圆交BC于点E,AB=2AC,
(1)求证:BE=2AD;
(2)求函数AC=1,BC=2时,求AD的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直四棱柱A1B1C1D1﹣ABCD中,当底面四边形ABCD满足条件 时,有A1C⊥B1D1 . (注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com