精英家教网 > 高中数学 > 题目详情
15.若集合A={x|$\sqrt{x}$>2},B={x|1<x<5},则A∩B等于(  )
A.(1,4)B.(4,5)C.(1,5)D.(5,+∞)

分析 求出A中不等式的解集确定出A,找出A与B的交集即可.

解答 解:由A中不等式解得:x>4,即A=(4,+∞),
∵B=(1,5),
∴A∩B=(4,5),
故选:B.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.椭圆C的中心在原点,焦点在x轴上,离心率等于$\frac{1}{2}$,且它的一个顶点恰好是抛物线x2=8$\sqrt{3}$y的焦点,则椭圆C的标准方程为(  )
A.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1C.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{9}$=1D.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.椭圆3x2+2y2=6的焦距为(  )
A.1B.2C.$\sqrt{5}$D.$2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.对于函数f(x),若存在区间A=[m,n],使得{y|y=f(x),x∈A}=A,则称函数f(x)为“可等域函数”,区间A为函数f(x)的一个“可等域区间”,给出下列四个函数:
①f(x)=sin($\frac{π}{2}$x)
②f(x)=|2x-1|
③f(x)=2x2-1
④f(x)=log2(2x-2).
其中存在唯一“可等域区间”的“可等域函数”的序号为②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知关于x的二次方程x2+2mx+2m+1=0.
(1)当m=1时,判断方程根的情况.
(2)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.李华经营了两家电动轿车销售连锁店,其月利润(单位:元)分别为L1=-5x2+900x-10000,L2=300x-1000(其中x为销售辆数),若某月两连锁店共销售了110辆,则能获得的最大利润为(  )
A.11000B.22000C.33000D.40000

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,已知双曲线C1:2x2-y2=1.
(1)设F是C1的左焦点,E是C1右支上一点.若|EF|=2$\sqrt{2}$,求E点的坐标;
(2)设斜率为1的直线l交C1于P、Q两点,若l与圆x2+y2=1相切,求证:OP⊥OQ;
(3)设椭圆C2:4x2+y2=1.若M、N分别是C1、C2上的动点,且OM⊥ON,求证:O到直线MN的距离是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.复数z=$\frac{2}{1-i}$,则复数z的模是(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设F1,F2分别是椭圆C:$\frac{{x}^{2}}{2}$+y2=1的左、右焦点,过F1且斜率不为零的动直线l与椭圆C交于A,B两点.
(Ⅰ)求△AF1F2的周长;
(Ⅱ)若存在直线l,使得直线F2A,AB,F2B与直线x=-$\frac{1}{2}$分别交于P,Q,R三个不同的点,且满足P,Q,R到x轴的距离依次成等比数列,求该直线l的方程.

查看答案和解析>>

同步练习册答案